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40 word summary:  30 

Lamivudine is a cornerstone antiretroviral whose efficacy has been ascribed to high 31 

fitness cost of the lamivudine resistance mutation M184V. However, here we 32 

demonstrate elevated viral loads in the context of M184V, likely attributable to 33 

compensatory mutations such as L74I. 34 

 35 

 36 

Abstract  37 

Background: M184V/I cause high-level lamivudine (3TC) and emtricitabine (FTC) 38 

resistance, and increased tenofovir (TDF) susceptibility. Nonetheless, 3TC and FTC 39 

(collectively referred to as XTC) appear to retain modest activity against HIV-1 with 40 

these mutations possibly as a result of reduced replication capacity. Here we 41 

determined how M184V/I impacts virus load (VL) in patients failing therapy on a 42 

TDF/XTC plus nonnucleoside RT inhibitor (NNRTI)-containing regimen. 43 

Methods: We compared VL in absence and presence M184V/I across studies using 44 

random effects meta-analysis. The effect of mutations on virus RT activity and 45 

infectiousness was analysed in vitro.  46 

Results: M184I/V was present in 817 (56.5%) of 1445 individuals with VF. VL was 47 

similar in individuals with or without M184I/V (difference in log10VL 0.18, 95% CI 48 

0.05-0.31). CD4 count was lower both at initiation of ART and at VF in participants 49 

who went on to develop M184V/I. L74I was present in 10.2% of persons with 50 

M184V/I but absent in persons without M184V/I (p<0.0001). In vitro, L74I 51 

compensated for defective replication of M184V mutated virus. 52 

Conclusion: Virus loads were similar in persons with and without M184V/I during VF 53 

on a TDF/XTC/NNRTI-containing regimen. We therefore do not find evidence for a 54 

benefit of XTC in the context of first line failure on this combination.  55 

 56 
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 59 

Introduction 60 

The global scale up of antiretroviral therapy (ART) using a public health approach 61 

with limited viral load monitoring has been accompanied by high prevalence of drug 62 

resistance to NNRTI containing regimens amongst individuals with virological failure 63 

in LMIC, 1-3 4-6.  64 

 65 

The cytosine analogues lamivudine (3TC) and emtricitabine (FTC), collectively 66 

referred to as XTC, are components of first and second line regimens recommended 67 

by WHO. However, high level XTC resistance can be conferred and selected by 68 

single amino acid changes at position 184 of RT in the highly conserved (Y183, 69 

M184, D185, D186) amino acid domain that includes the active (catalytic) site of the 70 

p66 polymerase subunit of RT7. M184V/I are the most commonly occurring drug-71 

resistance mutations in persons with acquired resistance to first-generation NNRTI 72 

containing regimens1-3 4-6.  73 

 74 

Several lines of evidence suggest that in addition to causing high-level reductions in 75 

XTC susceptibility in vitro and modestly increased TDF susceptibility, viruses with 76 

these mutations retain some in vivo susceptibility to XTC possibly because of their 77 

reduced replication capacity8-10. For example early studies showed that in patients 78 

receiving 3TC monotherapy, or dual therapy with AZT/3TC, VL did not return to 79 

baseline despite the development of M184V9, 11-14. In addition, discontinuation of 80 

lamivudine during combination ART was associated with a modest increase in VL15-81 
17. By contrast the COLATE study, a randomised controlled trial conducted in Europe 82 

in the early 2000s, showed there was no effect of removal of lamivudine from a 83 

failing regimen where the endpoint was viral suppression to <200 copies/ml or viral 84 

load change of 1.4log1018.  85 

To understand the relationship between M184I/V and viral load in the era of tenofovir 86 

based cART where TAMs were not present, and also in the context of limited or no 87 

access to viral load monitoring, we therefore studied individuals failing the WHO 88 

recommended regimen first line regimen TDF/Xtc/NNRTI across a range of settings. 89 



19  90 

Methods 91 

The study population has previously been described and is presented in 92 

Supplementary Table 120-41. Patients treated with tenofovir disoproxil fumarate (TDF) 93 

plus 3TC/FTC and NVP/EFV were included where there was documented virologic 94 

failure (VF) and RT sequence data from codons 40-240 were available. VF was 95 

locally determined, and for low-middle income countries (LMIC) the threshold was 96 

1000 copies/ml. HIV-1 RT sequences were determined by standard Sanger 97 

sequencing at individual study sites.  98 

 99 

Mutations were defined as amino acid differences at positions 1 to 240 between 100 

each sequence and the consensus subtype B amino acid reference sequence. As 101 

some individuals may have been exposed to thymidine analogues prior to TDF-102 

containing regimens5, we excluded individuals with sequences containing thymidine 103 

analogue mutations (TAMs) – M41L, D67N, K70R, L210W, T215Y/F, and K219Q/E. 104 

 105 

Each sequence was subtyped as previously described and sequence quality control 106 

measures were taken to identify sequences with APOBEC G-to-A hypermutation20. 107 

Duplicate sequences were removed. All patients reported that they were ARV naïve 108 

at baseline. The primary outcome was viral load at VF, hence patients without this 109 

outcome were excluded. 110 

 111 

Statistical analysis 112 

We graphically compared the distribution of log10 viral loads according to presence 113 

of M184I/V mutation both within and across studies. To quantify the impact of 114 

M184I/V on viral load, we calculated mean log10 viral load in each study according 115 

to M184I/V. Differences were pooled across studies using random effects meta-116 

analysis. Estimates of the standard error in each study were calculated by dividing 117 

the pooled estimate of the standard deviation by the square root of the number of 118 

patients with/without M184I/V in any given study. We repeated this process in 119 

subgroups of patients defined by several baseline characteristics: presence of K65R 120 



mutation, presence of major NNRTI mutations, choice of NRTI, choice of NNRTI, 121 

categories of baseline CD4 count (< and > 200 cells/mm3) and categories of baseline 122 

viral load (< and > 100,000 copies per mL).  Analyses of CD4 count and treatment 123 

failure used the same methods. To assess whether M184I/V was associated with 124 

viral load at failure independently of other mutations, we performed a separate 125 

analysis in which we used a mixed linear regression model adjusting for study as a 126 

random effect and other mutations associated with increased viral load (which were 127 

identified by forward stepwise variable selection). Next, we used Fisher’s exact test 128 

to identify mutations associated with M184I/V.  We used two-sided p-values and 129 

Stata version 15.1 for all statistical analyses.  130 

In vitro analyses 131 

A patient derived pol sequence was identified with mutations of interest and the gag-132 

PR-RT-IN region amplified by PCR with flanking restriction sites inserted into 133 

primers. Following cloning into an expression plasmid, site directed mutagenesis 134 

was performed to revert (i) isoleucine back to leucine at RT amino acid 74, (ii) valine 135 

back to methionine at RT amino acid 184, or both. Plasmids expressing gag-pol 136 

were co-transfected into 293T cells along with a VSV-G envelope expressing 137 

plasmid and a vector encoding luciferase expressed from an LTR promoter as 138 

previously described42. Supernatant containing virus was harvested 2 days later and 139 

used to infect fresh 293T cells. Luminescence as a read out of infection was read by 140 

luminometry 2 days later. Viral p24 abundance in supernatants was estimated using 141 

western blot using a p24 antibody as previously described43. 142 

Results 143 

Amongst 2873 participants included in the initial group, 1445 from 32 study groups 144 

across 15 countries had an available failure viral load measurement of which 145 

M184I/V was present in 817 (56.5%) (Table 1 and supplementary Table 1). 146 

Participants were from sub-Saharan Africa (55.4%), Asia (19.2%), Europe (16.2%) 147 

and North America (9.3%). All participants were on TDF, most of them also treated 148 

with EFV (75.2%) and 3TC (64.5%), and participants harboring M184I/V mutated 149 

virus were significantly more likely to have high level tenofovir and NNRTI resistance 150 

(Table 1B). Participants harboring M184I/V were also more likely to have multiple 151 



NNRTI mutations. 152 

In a crude comparison of viral load at failure, patients with M184I/V present had a 153 

higher median log 10 viral load (4.7, interquartile range (IQR): 3.4-5) than patients 154 

without M184I/V (median 4.3, IQR 4.1-5.3). When restricting analyses to 155 

comparisons of patients within the same study, the estimated difference in viral load 156 

was non-significant in the vast majority of studies (Figure 1). When within-study 157 

differences were pooled across studies, there was a marginally higher viral load in 158 

patients with M184I/V present compared to absent (pooled difference in log10 viral 159 

load 0.18, 95% CI 0.05-0.31) (Figure 2). Following statistical adjustment for other 160 

mutations independently associated with increased viral load, M184I/V was no 161 

longer significantly associated with viral load at failure. However, the estimated 162 

difference and 95% confidence interval (0.09, 95% CI -0.01 to 0.20) excluded any 163 

meaningful decrease in failure viral load associated with M184I/V. There was no 164 

evidence that relationship between M184I/V and failure viral load was modified by 165 

choice of NRTI, choice of NNRTI, or drug resistance to NNRTI or tenofovir (Figure 166 

2).   167 

We next explored the relationship between detection of M184I/V failure and CD4 168 

count, noting that the duration of VF was likely longer in LMIC regions. Mean 169 

baseline CD4 was significantly lower amongst patients who went on to develop 170 

M184I/V by treatment failure compared to those who did not (88 vs 180, p<0.0001). 171 

Similarly, at VF, presence of M184V/I was associated with lower CD4 count, though 172 

the difference was greater (Figure 3). Between baseline and treatment failure, CD4 173 

count increased to a similar extent in patients with and without M184I/V (median 174 

increase: 79 vs 48 cells/mm3, p=0.55). 175 

We next examined NRTI mutations associated with M184V/I that might play a 176 

compensatory role for M184I/V. We looked for associations in the dataset between 177 

M184V/I and RT amino acid positions known to be associated with drug exposure. 178 

Figure 4 shows mutations with strong evidence of an association with M184I/V. 179 

Many of these mutations have previously been associated with drug resistance to 180 

tenofovir, either directly (K65R, K70E) or as compensatory mutations for K65R 181 

(A62V, S68N, F155Y). The following NNRTI mutations were also associated (A98G, 182 

L100I, K103R, V108I, Y181C, Y188L, G190A, P225H, L228R, M230L).  183 



Of note, L74I was the only mutation to be exclusively associated with M184V/I, 184 

occurring in 83 (10.2%) of patients with M184I/V, and in none of the 628 patients in 185 

which M184I/V was absent (p for association <0.0001). L74I was observed in 11.7% 186 

of subtype C infected participants with M184I/V at VF, and in 14.4% of CRF01_AE 187 

participants with M184I/V at VF (Supplementary Table 2).  188 

Given a previous report that L74I can restore replication to a virus with the K65R 189 

mutation without conferring drug resistance44, we next sought to test the hypothesis 190 

that L74I could restore replication ‘fitness’ to a M184V mutant virus, explaining the 191 

higher than expected viral loads. Molecular characterisation of virus with the 192 

mutations M184V and L74I was undertaken. The viral isolate tested also had the 193 

NNRTI resistance mutations A98G, K103N and P225H. Site directed mutagenesis 194 

was performed to revert isoleucine back to leucine at 74 and Valine to Methionine at 195 

184 (Figure 5A). We did not however assess the impact of M184I. We measured (i) 196 

infectivity of these viruses and (ii) reverse transcriptase efficiency in a single round 197 

replication assay (Figure 5). We found that removing the L74I mutation significantly 198 

decreased the efficiency of reverse transcription (Figure 5B, compare left bar with 199 

middle bar) whilst virus abundance was not affected as determined by western blot 200 

of viral p24 abundance in supernatants (Figure 5B bottom panel). Infectivity was also 201 

significantly decreased by reversion of the compensatory mutation (Figure 5C, 202 

compare left bar with middle bar). Mutation of M184V back to M, leaving a virus with 203 

only L74I, had no impact on reverse transcriptase efficiency and a minor effect on 204 

infectivity (Figure 5B, C compare left and right bars). 205 

 206 

Discussion 207 

Despite having a low genetic barrier to drug resistance, lamivudine has retained 208 

importance and a central role in both first and second line ART 45. A complete 209 

understanding of lamivudine efficacy is therefore important, particularly given reports 210 

suggesting that lamivudine use confers viral load benefit despite high level 211 

resistance to the drug in the form of the M184V/I. 212 

 213 



Our primary finding that viral load was similar in participants with and without 214 

M184V/I at the time of VF was robust across baseline CD4 count, baseline viral load, 215 

gender, and different NNRTI and NRTI drugs in the first line treatment regimen. We 216 

observed lower baseline and VF CD4 counts in individuals with M184V/I, though rate 217 

of change of CD4 did not differ based on M184V/I status. Lower baseline CD4 count 218 

is known to be associated with higher VF rates and a higher probability of drug 219 

resistance at VF6, 46. A possible explanation for this finding is that the antiviral effect 220 

of a competent immune system is important in limiting replication and emergence of 221 

resistance in tissue compartments where ARV drug penetration is suboptimal. A 222 

lower CD4 count at VF in the group with M184V/I further argues against this 223 

mutation being ‘protective’ or ‘benign’. These data are also consistent with reports of 224 

the pathogenic potential of M184V containing viruses in both humans47 and animal 225 

models48. 226 

 227 

We identified L74I as being specifically enriched in individuals with M184V and not 228 

present at all in those without M184V/I. We observed significant prevalence of L74I 229 

in subtypes C and CRF01_AE, though limited numbers of participants across 230 

subtypes limited a full understanding of subtype distribution. In vitro experiments 231 

demonstrated that L74I restores replication efficiency to a virus with the M184V 232 

mutation over a single round of infection, and that enhancement was due to 233 

efficiency of HIV reverse transcription in viral particles.  234 

 235 

The emergence of L74I exclusively in patients with M184V/I suggests an in vivo 236 

selection advantage of L74I + M184V replication over M184V alone at least in some 237 

individuals. L74I was first reported as a mutation associated with exposure to 238 

abacavir or less commonly tenofovir49, 50, and it appeared more common in patients 239 

with thymidine analogue mutations50. Correlation with M184V/I has not been made to 240 

date and in vitro experiments not performed with L74I + M184V/I containing viruses.  241 

 242 

As L74I was observed only in around 10% of those with M184V/I, we postulate that 243 

alternative mutations, less strongly linked to M184V/I or perhaps outside the region 244 

of the pol gene sequenced in this study, could have similar effects as L74I in 245 

participants with M184V/I. Data from our study support the transmission potential of 246 



M184V/I containing viruses in the context of prolonged virological failure and 247 

accumulated co-evolved mutations in RT that occurs under ‘real world’ conditions.  248 

 249 

Limitations of this study include its retrospective cross-sectional design, absence of 250 

drug levels or adherence data and unknown duration of VF for participants. Our 251 

study was not designed to provide a mechanistic understanding of the relationship 252 

between M184 and fitness, rather to understand the pathogenic potential of M184V 253 

containing viruses in treated ‘real world’ patients. Finally. there was heterogeneity 254 

between population groups, and to account for this, analyses were conducted within 255 

study. It should also be noted that stratification by tenofovir or NNRTI resistance 256 

resulted in small numbers for sub analyses.  257 

 258 

In summary, we show that lamivudine resistant and susceptible viruses show similar 259 

viral loads in patients failing NNRTI based ART containing lamivudine, tenofovir and 260 

NNRTI, likely in part due to viral evolution of compensatory changes that maintain 261 

replication efficiency of M184V/I containing viruses. These data reinforce the 262 

importance of effective viral load monitoring to limit HIV drug resistance and disease 263 

progression in the face of suboptimal drug pressure, particularly in low resource 264 

settings. Finally, given that we did not find benefit of lamivudine in failing first line 265 

patients, a prospective clinical trial could to determine whether there is benefit for 266 

including XTC in second-line regimens for the treatment of persons whose viruses 267 

develop M184I/V following VF on a first-line treatment regimen. 268 

 269 
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Table 1: Baseline characteristics of participants by geographic region 

Table 2: Summary of drug resistance characteristics of participants at virological 

failure with tenofovir + cytosine analogue + NNRTI by geographical region 

Figure 1: Difference in viral load by mutations at RT position 184 in study groups 

with 95% confidence interval using random effects meta-analysis. Boxes represent 

mean with 95% CI. Estimates to the right indicate higher viral load in the presence of 

M184V/I, and estimates to the left lower viral load in presence of M184V/I. 

Figure 2: Association of M184V/I mutation with log10 viral load across subgroups. 

Diamonds represent mean with 95% CI. Estimates to the right indicate higher viral 

load in the presence of M184V/I. 

Figure 3: Differences in CD4 count during virological failure within studies by 

presence and absence of M184V/I. Boxes represent mean with 95% CI. Estimates to 

the left of centre line indicate lower CD4 count in participants with M184V/I.  

Figure 4: HIV reverse transcriptase inhibitor resistance associated mutations 
enriched in virologically failing participants (n=1445) with M184V/I. Mutations are 
shown that occurred in at least 10% of individuals with M184V/ at a significance level 
of <0.001.  
 
Figure 5. In vitro replication measurement of lamivudine resistant subtype C clinical 
isolate containing M184V and L74I and revertant mutations. A. Amino acid multiple 
sequence alignment of clinical isolate and revertant mutants generated by site 
directed mutagenesis. Numbering is relative to strain HXB2. B. In vitro reverse 
transcription efficiency contained in pelleted single round virus from cells producing 
clinical HIV isolate RT sequence and mutants. Bottom panel shows western blot of 
corresponding virus associated p24 in supernatants from cells. C. Single round 
infection of target HEK 293T cells by equal quantities of luciferase expressing VSV-
G pseudotyped HIV viruses from B. Data in B and C were performed in replicate and 
means are presented with error bars corresponding to standard deviation. RLU: 
relative light units.
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Region M184 I/V Patients EFV 3TC  Baseline CD4 count  Baseline log10 viral load 
      N 

with 
data 

  N 
with 
data 

 

Overall No 628 523 (83.3%) 350 (55.7%)  351 180.0 (82.0 to 288.0)  253 5.0 (4.5 to 5.5) 
 Yes 817 564 (69.0%) 582 (71.2%)  385 88.0 (36.0 to 165.0)  187 5.2 (4.7 to 5.7) 
Sub-saharan 
Africa 

No 257 198 (77.0%) 204 (79.4%)  142 148.0 (69.0 to 264.0)  43 5.3 (4.5 to 5.7) 

 Yes 543 356 (65.6%) 430 (79.2%)  270 77.0 (35.0 to 138.0)  71 5.3 (4.7 to 5.7) 
Asia No 136 112 (82.4%) 110 (80.9%)  0 -  0 - 
 Yes 141 121 (85.8%) 122 (86.5%)  4 69.5 (33.5 to 159.0)  5 4.7 (4.6 to 5.9) 
Europe No 146 127 (87.0%) 25 (17.1%)  138 199.5 (84.0 to 304.0)  136 5.0 (4.6 to 5.5) 
 Yes 88 53 (60.2%) 23 (26.1%)  77 157.0 (62.0 to 232.0)  76 5.1 (4.8 to 5.7) 
North America No 89 86 (96.6%) 11 (12.4%)  71 204.0 (98.0 to 351.0)  77 4.7 (4.3 to 5.3) 
 Yes 45 34 (75.6%) 7 (15.6%)  34 67.5 (27.0 to 156.0)  35 5.2 (4.8 to 5.6) 
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Region M184 
I/V  

TDF 
resistance, n 

(%) 

At least one 
major NNRTI 
mutation, n 

(%) 

Number of 
NNRTI 

mutations, 
mean (SD) 

Failure log10 viral 
load 

 Failure CD4 count, 
median (IQR)  

      N 
with 
data 

Median (IQR) 

Overall No 137 (21.8%) 380 (60.5%) 1.2 (1.3) 4.3 (3.4 to 5.0) 237 263.0 (121.0 to 382.0) 
 Yes 539 (66.0%) 792 (96.9%) 2.9 (1.3) 4.7 (4.1 to 5.3) 211 104.0 (29.0 to 236.0) 
Sub-saharan 
Africa 

No 80 (31.1%) 175 (68.1%) 1.5 (1.4) 4.7 (3.9 to 5.2) 29 262.0 (180.0 to 360.0) 

 Yes 400 (73.7%) 531 (97.8%) 2.9 (1.3) 4.8 (4.1 to 5.3) 52 137.0 (20.0 to 219.0) 
Asia No 30 (22.1%) 91 (66.9%) 1.3 (1.4) 4.8 (4.1 to 5.3) 119 188.0 (71.0 to 355.0) 
 Yes 82 (58.2%) 130 (92.2%) 2.9 (1.5) 4.9 (4.2 to 5.3) 118 87.5 (29.0 to 229.0) 
Europe No 20 (13.7%) 65 (44.5%) 0.7 (1.0) 3.4 (2.7 to 4.6) 32 323.0 (238.0 to 387.0) 
 Yes 38 (43.2%) 86 (97.7%) 2.6 (1.4) 4.2 (3.8 to 4.8) 12 242.5 (122.0 to 345.0) 
North America No 7 (7.9%) 49 (55.1%) 0.8 (0.9) 3.4 (2.4 to 4.3) 57 312.0 (198.0 to 476.0) 
 Yes 19 (42.2%) 45 (100.0%) 2.8 (1.4) 4.2 (3.7 to 4.7) 29 173.0 (42.0 to 329.0) 

Table2
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Supplementary Table 1. List of studies/datasets with publicly available RT sequences from individuals failing 
a TDF+XTC+NNRTI-containing first-line regimen 
 

Author PubMedID Number of 
individuals Regions 

TenoRes Studies 
(29 datasets, 1573 individuals) 

Sirivichayakul, S  282 Thailand 

Theys, K 23183438 203 Belgium, Germany, Israel, Italy, Luxembourg, Portugal, Spain, 
Sweden 

Stanford, A 28365230 118 U.S. 
Hunt, G 28981637 115 South Africa 

Goedhals, D  102 South Africa 
de Oliveira, T  81 South Africa 

Rokx, C 25273080 68 Netherlands 
Santoro, M  65 Italy 

Yang, C  56 Kenya 
Schmidt, D  53 Germany 

Hoffmann, CJ 23751421 50 South Africa 
Sobrino-Vegas, P 21820763 40 Spain 

Neogi, U 24922326 38 Sweden 
Kaleebu, P 26700639 35 Uganda 
Brooks, K 27231099 32 Kenya 
Sunpath, H 22739389 31 South Africa 

Charpentier, C  31 France 
Theys, K 23027713 30 Portugal 

Etiebet, MA 23079810 21 Nigeria 
Kerschberger, B  21 Swaziland 

Yang, C  17 Zambia 
Yang, C  15 Tanzania 

Shapiro, J  14 Israel 
Arruda, M  13 Brazil 
Ndembi, N  12 Nigeria 
Yang, WL 26362944 10 Switzerland 
Ugbena, R 22544206 7 Nigeria 

Hamers, RL  7 Nigeria, Uganda, Zambia 
Yang, C  6 Uganda 

Non-TenoRes Studies 
(22 datasets, 1840 individuals) 

Van Zyl, GU  466 South Africa 
Steegen, K 27659733 322 South Africa 

Van Zyl, GU 23840622 151 South Africa 
Neogi, U 26413747 146 South Africa 

Dinesha, TR 27334566 144 India 
Theys, K  121 Belgium, Germany, Italy, Luxembourg, Portugal, Sweden 

Lam, EP 27346600 102 Argentina, India, Israel, Malaysia, Mexico, Nigeria, South Africa, 
Thailand, U.K. 

Skhosana, L 25659108 79 South Africa 
Ndahimana, JD 27125473 68 Rwanda 

Hamers, RL 22474222 47 Nigeria, South Africa, Uganda, Zambia, Zimbabwe 
Mollan, K 23148287 44 U.S. 

Hawkins, CA 19644383 24 Nigeria 
Sigaloff, KC 21694603 21 Kenya, Nigeria, South Africa, Uganda, Zambia 

Ngo-Giang-Huong, N 22132100 19 Thailand 
Seu, L 25754408 19 Zambia 

Jiamsakul, A 25141905 15 Philippines, Thailand 

Supp Table 1



Riddler, SA 18480202 12 U.S. 
Abdissa, A 24708645 12 Ethiopia 

Rey, D 19036752 8 France 
Avidor, B 23469241 8 Israel 

Non-B Workgroup 15839752 7 Portugal, U.K. 
Khairunisa, SQ 25348045 5 Indonesia 

TDF - tenofovir disoproxil fumarate; TenoRes Studies – studies included in the TenoRes analysis 
(TenoRes Study Group, Lancet Infect Dis. 2016). 

 
  



SUBTYPE L74L L74I L74V 
A 42 (95.5%) 1 (2.3%) 1 (2.3%) 
B 107 (89.2%) 9 (7.5%) 4 (3.3%) 
C 349 (83.3%) 49 (11.7%) 21 (5.0%) 
CRF01_AE 115 (82.7%) 20 (14.4%) 4 (2.9%) 
CRF02_AG 18 (100.0%) 0 (0%) 0 (0%) 
D 36 (94.7%) 1 (2.6%) 1 (2.6%) 
F 3 (100.0%) 0 (0%) 0 (0%) 
G 31 (93.9%) 1 (3.0%) 1 (3.0%) 
K 3 (100.0%) 0 (0%) 0 (0%) 

 

Supplementary table 1: Subtype distribution of mutations at RT position 74 in participants with RT 
M184V/I detected by Sanger sequencing at virological failure.  
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Supplementary Figure 1: Difference in viral load at virological failure in the presence of M184I (left panel) or M184V (right panel) 

versus M184M within study groups with 95% confidence interval using random effects meta-analysis. Boxes represent mean with 

95% CI.  
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