617 research outputs found
Antimicrobial Behavior of Biosynthesized Silica-Silver Nanocomposite for Water Disinfection: A Mechanistic Perspective
The biosynthesis of nano-silica silver nanocomposite (NSAgNC) and it’s as antibacterial effect on gram-negative bacteria viz. Escherichia coli and Pseudomonas aeruginosa has been investigated for disinfection of water. The as-synthesized NSAgNC exhibited antibacterial activity in a dose dependent manner and ~99.9% of E. coli and P. aeruginosa were killed at a concentration of 1.5 mg/mL of NSAgNC (5.1 wt% Ag) within 5 h. The NSAgNC showed similar antibacterial activities both in oxic and anoxic conditions. The results further demonstrated that NSAgNC exhibited reactive oxygen species (ROS) independent “particle specific” antibacterial activity through multiple steps in absence of leached out Ag+ ions. The initial binding of NSAgNC on the cell wall caused loss of cell membrane integrity and leakage of cytoplasmic materials. Inhibition of respiratory chain dehydrogenase by NSAgNC caused metabolic inactivation of the cells and affecting the cell viability. Genomic and proteomic studies further demonstrated the fragmentations of both plasmid and genomic DNA and down regulation of protein expression in NSAgNC treated cells, which leading to the cell death. Thus the biosynthesized NSAgNC has great potential as disinfectant for water purification while minimizing the toxic effects
Anomalous Self-Energy Effects of the B_1g Phonon in Y_{1-x}(Pr,Ca)_xBa_2Cu_3O_7 Films
In Raman spectra of cuprate superconductors the gap shows up both directly,
via a redistribution of the electronic background, the so-called "2Delta
peaks", and indirectly, e.g. via the renormalization of phononic excitations.
We use a model that allows us to study the redistribution and the related
phonon self-energy effects simultaneously. We apply this model to the B_1g
phonon of Y_{1-x}(Pr,Ca)_xBa_2Cu_3O_7 films, where Pr or Ca substitution
enables us to investigate under- and overdoped samples. While various
self-energy effects can be explained by the strength and energy of the 2\Delta
peaks, anomalies remain. We discuss possible origins of these anomalies.Comment: 6 pages including 4 figure
Group III PLA2 from the scorpion, Mesobuthus tamulus : cloning and recombinant expression in E. coli
Phospholipases A2 (PLA2) are enzymes that specifically hydrolyze the
sn-2 fatty acid acyl bond of phospholipids, producing a free fatty acid
and a lyso-phospholipid. We report the cloning and expression of a
secretory phospholipase A2 (sPLA2) from Mesobuthus tamulus , Indian
red scorpion. The nucleotide sequence codes for a 167 residue enzyme.
The open reading frame codes for a 31 amino acid signal peptide
followed by a mature portion of the protein. The primary structure
shows the calcium binding motif, catalytic residues, 8 highly-conserved
cysteines and C-terminal extension which classify it as a group III
PLA2. The entire transcript was expressed in Escherichia coli and was
purified by metal affinity chromatography under denaturing conditions.
The protein was refolded by serial dilutions in the refolding buffer to
its active form. Hemolytic assays indicate that the protein adopts a
functional conformation. The functional requisites such as optimum pH
of 8 and calcium dependency are shown. This report provides a simple
but robust methodology for recombinant expression of toxic proteins
Spin injection into a ballistic semiconductor microstructure
A theory of spin injection across a ballistic
ferromagnet-semiconductor-ferromagnet junction is developed for the Boltzmann
regime. Spin injection coefficient is suppressed by the Sharvin
resistance of the semiconductor , where is the
Fermi-surface cross-section. It competes with the diffusion resistances of the
ferromagnets , and in the absence of contact
barriers. Efficient spin injection can be ensured by contact barriers. Explicit
formulae for the junction resistance and the spin-valve effect are presented.Comment: 5 pages, 2 column REVTeX. Explicit prescription relating the results
of the ballistic and diffusive theories of spin injection is added. To this
end, some notations are changed. Three references added, typos correcte
Novel CP-violating Effects in B decays from Charged-Higgs in a Two-Higgs Doublet Model for the Top Quark
We explore charged-Higgs cp-violating effects in a specific type III
two-Higgs doublet model which is theoretically attractive as it accommodates
the large mass of the top quark in a natural fashion. Two new CP-violating
phases arise from the right-handed up quark sector. We consider CP violation in
both neutral and charged B decays. Some of the important findings are as
follows. 1) Large direct-CP asymmetry is found to be possible for B+- to psi/J
K+-. 2) Sizable D-anti-D mixing effect at the percent level is found to be
admissible despite the stringent constraints from the data on K-anti-K mixing,
b to s gamma and B to tau nu decays. 3) A simple but distinctive CP asymmetry
pattern emerges in decays of B_d and B_s mesons, including B_d to psi/J K_S, D+
D-, and B_s to D_s+ D_s-, psi eta/eta^prime, psi/J K_S. 4) The effect of
D-anti-D mixing on the CP asymmetry in B+- to D/anti-D K+- and on the
extraction of the angle gamma of the unitarity triangle from such decays can be
significant.Comment: 32 pages, 5 figures, section V.A revised, version to appear in PR
Spin polarization of the L-gap surface states on Au(111)
The electron spin polarization (ESP) of the L-gap surface states on Au(111)
is investigated theoretically by means of first-principles electronic-structure
and photoemission calculations. The surface states show a large spin-orbit
induced in-plane ESP which is perpendicular to the in-plane wavevector, in
close analogy to a two-dimensional electron gas with Rashba spin-orbit
interaction. The surface corrugation leads to a small ESP component normal to
the surface, being not reported so far. The surface-states ESP can be probed
qualitatively and quantitatively by spin- and angle-resolved photoelectron
spectroscopy, provided that the initial-state ESP is retained in the
photoemission process and not obscured by spin-orbit induced polarization
effects. Relativistic photoemission calculations provide detailed information
on what photoemission set-ups allow to conclude from the photoelectron ESP on
that of the surface states.Comment: 22 pages with 8 figure
Spherically symmetric dissipative anisotropic fluids: A general study
The full set of equations governing the evolution of self--gravitating
spherically symmetric dissipative fluids with anisotropic stresses is deployed
and used to carry out a general study on the behaviour of such systems, in the
context of general relativity. Emphasis is given to the link between the Weyl
tensor, the shear tensor, the anisotropy of the pressure and the density
inhomogeneity. In particular we provide the general, necessary and sufficient,
condition for the vanishing of the spatial gradients of energy density, which
in turn suggests a possible definition of a gravitational arrow of time. Some
solutions are also exhibited to illustrate the discussion.Comment: 28 pages Latex. To appear in Phys.Rev.
Aharonov-Bohm Physics with Spin II: Spin-Flip Effects in Two-dimensional Ballistic Systems
We study spin effects in the magneto-conductance of ballistic mesoscopic
systems subject to inhomogeneous magnetic fields. We present a numerical
approach to the spin-dependent Landauer conductance which generalizes recursive
Green function techniques to the case with spin. Based on this method we
address spin-flip effects in quantum transport of spin-polarized and
-unpolarized electrons through quantum wires and various two-dimensional
Aharonov-Bohm geometries. In particular, we investigate the range of validity
of a spin switch mechanism recently found which allows for controlling spins
indirectly via Aharonov-Bohm fluxes. Our numerical results are compared to a
transfer-matrix model for one-dimensional ring structures presented in the
first paper (Hentschel et al., submitted to Phys. Rev. B) of this series.Comment: 29 pages, 15 figures. Second part of a series of two article
Higher dimensional dust collapse with a cosmological constant
The general solution of the Einstein equation for higher dimensional (HD)
spherically symmetric collapse of inhomogeneous dust in presence of a
cosmological term, i.e., exact interior solutions of the Einstein field
equations is presented for the HD Tolman-Bondi metrics imbedded in a de Sitter
background. The solution is then matched to exterior HD Scwarschild-de Sitter.
A brief discussion on the causal structure singularities and horizons is
provided. It turns out that the collapse proceed in the same way as in the
Minkowski background, i.e., the strong curvature naked singularities form and
that the higher dimensions seem to favor black holes rather than naked
singularities.Comment: 7 Pages, no figure
Preparation and in vitro Evaluation of Ethylcellulose Coated Egg Albumin Microspheres of Diltiazem Hydrochloride
The aim of the present investigation was to develop sustained release ethylcellulose-coated egg albumin microspheres of diltiazem hydrochloride (DH) to improve patient compliance. The microspheres were prepared by the w/o emulsion thermal cross-linking method using different proportion of the polymer to drug ratio (1.0:1.0, 1.0:1.5 and 1.0:2.0). A 32 full factorial design was employed to optimize two independent variables, polymer to drug ratio (X1) and surfactant concentration (X2) on dependent variables, namely % drug loading, % drug release in 60 min (Y60) and the time required for 80 % drug release (t80) were selected as dependable variable. Optimized formulation was compared to its sustained release tablet available in market. The polymer to drug ratio was optimized to 1:1 at which a high drug entrapment efficiency 79.20% ± 0.7% and the geometric mean diameter 47.30 ± 1.5 mm were found. All batches showed a biphasic release pattern; initial burst release effect (55% DH in 1 h) and then were released completely within 6 h. In situ coating of optimized egg albumin DH microspheres using 7.5% ethylcellulose significantly reduced the burst effect and provided a slow release of DH for 8-10 h. Finally, it was concluded that ethylcellulose-coated egg albumin DH microspheres is suitable for oral SR devices in the treatment of angina pectoris, cardiac arrhythmias, and hypertension due to their size and release profile
- …