61 research outputs found

    Role of antisense RNAs in evolution of yeast regulatory complexity

    Get PDF
    AbstractAntisense RNAs (asRNAs) are known to regulate gene expression. However, a genome-wide mechanism of asRNA regulation is unclear, and there is no good explanation why partial asRNAs are not functional. To explore its regulatory role, we investigated asRNAs using an evolutionary approach, as genome-wide experimental data are limited. We found that the percentage of genes coupling with asRNAs in Saccharomyces cerevisiae is negatively associated with regulatory complexity and evolutionary age. Nevertheless, asRNAs evolve more slowly when their sense genes are under more complex regulation. Older genes coupling with asRNAs are more likely to demonstrate inverse expression, reflecting the role of these asRNAs as repressors. Our analyses provide novel evidence, suggesting a minor contribution of asRNAs in developing regulatory complexity. Although our results support the leaky hypothesis for asRNA transcription, our evidence also suggests that partial asRNAs may have evolved as repressors. Our study deepens the understanding of asRNA regulatory evolution

    Adaptation of visual spectra and opsin genes in seabreams

    Get PDF
    AbstractThree species of seabreams, Acanthopagrus berda, Acanthopagrus schlegelii and Pagrus major, living at different depths, were chosen to investigate how visual spectra and opsin genes evolve in response to various photic environments. The λmax of photoreceptors and opsin genes were measured and cloned from these species. Eight to twelve nm spectral shifts in the rod and blue cone cells were observed between the deep-sea, P. major, and shallow-sea species, A. berda and A. schlegelii. Furthermore, the deep-sea P. major has lost its red light vision. Six opsin genes, Rh1, Rh2A, Rh2B, SWS1, SWS2 and LWS, were identified from all three seabream species, with the LWS genes of P. major having undergone pseudogenization. These data indicate that the photic environment of habitats select for the physiology of visual spectra and coding of opsin genes

    Reanalyze unassigned reads in Sanger based metagenomic data using conserved gene adjacency

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Investigation of metagenomes provides greater insight into uncultured microbial communities. The improvement in sequencing technology, which yields a large amount of sequence data, has led to major breakthroughs in the field. However, at present, taxonomic binning tools for metagenomes discard 30-40% of Sanger sequencing data due to the stringency of BLAST cut-offs. In an attempt to provide a comprehensive overview of metagenomic data, we re-analyzed the discarded metagenomes by using less stringent cut-offs. Additionally, we introduced a new criterion, namely, the evolutionary conservation of adjacency between neighboring genes. To evaluate the feasibility of our approach, we re-analyzed discarded contigs and singletons from several environments with different levels of complexity. We also compared the consistency between our taxonomic binning and those reported in the original studies.</p> <p>Results</p> <p>Among the discarded data, we found that 23.7 ± 3.9% of singletons and 14.1 ± 1.0% of contigs were assigned to taxa. The recovery rates for singletons were higher than those for contigs. The <it>Pearson </it>correlation coefficient revealed a high degree of similarity (0.94 ± 0.03 at the phylum rank and 0.80 ± 0.11 at the family rank) between the proposed taxonomic binning approach and those reported in original studies. In addition, an evaluation using simulated data demonstrated the reliability of the proposed approach.</p> <p>Conclusions</p> <p>Our findings suggest that taking account of conserved neighboring gene adjacency improves taxonomic assignment when analyzing metagenomes using Sanger sequencing. In other words, utilizing the conserved gene order as a criterion will reduce the amount of data discarded when analyzing metagenomes.</p

    Co-expression of adjacent genes in yeast cannot be simply attributed to shared regulatory system

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Adjacent gene pairs in the yeast genome have a tendency to express concurrently. Sharing of regulatory elements within the intergenic region of those adjacent gene pairs was often considered the major mechanism responsible for such co-expression. However, it is still in debate to what extent that common transcription factors (TFs) contribute to the co-expression of adjacent genes. In order to resolve the evolutionary aspect of this issue, we investigated the conservation of adjacent pairs in five yeast species. By using the information for TF binding sites in promoter regions available from the MYBS database <url>http://cg1.iis.sinica.edu.tw/~mybs/</url>, the ratios of TF-sharing pairs among all the adjacent pairs in yeast genomes were analyzed. The levels of co-expression in different adjacent patterns were also compared.</p> <p>Results</p> <p>Our analyses showed that the proportion of adjacent pairs conserved in five yeast species is relatively low compared to that in the mammalian lineage. The proportion was also low for adjacent gene pairs with shared TFs. Particularly, the statistical analysis suggested that co-expression of adjacent gene pairs was not noticeably associated with the sharing of TFs in these pairs. We further proposed a case of the PAC (polymerase A and C) and RRPE (rRNA processing element) motifs which co-regulate divergent/bidirectional pairs, and found that the shared TFs were not significantly relevant to co-expression of divergent promoters among adjacent genes.</p> <p>Conclusion</p> <p>Our findings suggested that the commonly shared <it>cis</it>-regulatory system does not solely contribute to the co-expression of adjacent gene pairs in yeast genome. Therefore we believe that during evolution yeasts have developed a sophisticated regulatory system that integrates both TF-based and non-TF based mechanisms(s) for concurrent regulation of neighboring genes in response to various environmental changes.</p

    Identification of activated cryptic 5′ splice sites using structure profiles and odds measure

    Get PDF
    The activation of cryptic 5′ splice sites (5′ SSs) is often related to human hereditary diseases. The DNA-based mutation screening strategies are commonly used to recognize the cryptic 5′ SSs, because features of the local DNA sequence can influence the choice of cryptic 5′ SSs. To improve the identification of the cryptic 5′ SSs, we developed a structure-based method, named SPO (structure profiles and odds measure), which combines two parameters, the structural feature derived from hydroxyl radical cleavage pattern and odds measure, to assess the likelihood of a cryptic 5′ SS activation in competing with its paired authentic 5′ SS. Compared to the current tools for identifying activated cryptic 5′ SSs, the SPO algorithm achieves higher prediction accuracy than the other methods, including MaxEnt, MDD, Markov model, weight matrix model, Shapiro and Senapathy matrix, Ri and ΔG. In addition, the predicted ΔSPO scores from the SPO algorithm exhibited a greater degree of correlation with the strength of cryptic 5′ SS activation than that measured from the other seven methods. In conclusion, the SPO algorithm provides an optimal identification of cryptic 5′ SSs, can be applied in designing mutagenesis experiments for various splicing events and may be helpful to investigate the relationship between structural variants and human hereditary diseases

    Co-Expression of Neighboring Genes in the Zebrafish (Danio rerio) Genome

    Get PDF
    Neighboring genes in the eukaryotic genome have a tendency to express concurrently, and the proximity of two adjacent genes is often considered a possible explanation for their co-expression behavior. However, the actual contribution of the physical distance between two genes to their co-expression behavior has yet to be defined. To further investigate this issue, we studied the co-expression of neighboring genes in zebrafish, which has a compact genome and has experienced a whole genome duplication event. Our analysis shows that the proportion of highly co-expressed neighboring pairs (Pearson’s correlation coefficient R>0.7) is low (0.24% ~ 0.67%); however, it is still significantly higher than that of random pairs. In particular, the statistical result implies that the co-expression tendency of neighboring pairs is negatively correlated with their physical distance. Our findings therefore suggest that physical distance may play an important role in the co-expression of neighboring genes. Possible mechanisms related to the neighboring genes’ co-expression are also discussed

    Additional file 1: of Functional analysis for gut microbes of the brown tree frog (Polypedates megacephalus) in artificial hibernation

    No full text
    Tax4Fun showing predicted relative abundance of KEGG ortholog groups. Abbreviations: AH frogs, artificially hibernating frogs; NH frogs, nonhibernating frogs. Values are means ± SD. (XLSX 31 kb

    Evidence of association between Nucleosome Occupancy and the Evolution of Transcription Factor Binding Sites in Yeast

    No full text
    Abstract Background Divergence of transcription factor binding sites is considered to be an important source of regulatory evolution. The associations between transcription factor binding sites and phenotypic diversity have been investigated in many model organisms. However, the understanding of other factors that contribute to it is still limited. Recent studies have elucidated the effect of chromatin structure on molecular evolution of genomic DNA. Though the profound impact of nucleosome positions on gene regulation has been reported, their influence on transcriptional evolution is still less explored. With the availability of genome-wide nucleosome map in yeast species, it is thus desirable to investigate their impact on transcription factor binding site evolution. Here, we present a comprehensive analysis of the role of nucleosome positioning in the evolution of transcription factor binding sites. Results We compared the transcription factor binding site frequency in nucleosome occupied regions and nucleosome depleted regions in promoters of old (orthologs among Saccharomycetaceae) and young (Saccharomyces specific) genes; and in duplicate gene pairs. We demonstrated that nucleosome occupied regions accommodate greater binding site variations than nucleosome depleted regions in young genes and in duplicate genes. This finding was confirmed by measuring the difference in evolutionary rates of binding sites in sensu stricto yeasts at nucleosome occupied regions and nucleosome depleted regions. The binding sites at nucleosome occupied regions exhibited a consistently higher evolution rate than those at nucleosome depleted regions, corroborating the difference in the selection constraints at the two regions. Finally, through site-directed mutagenesis experiment, we found that binding site gain or loss events at nucleosome depleted regions may cause more expression differences than those in nucleosome occupied regions. Conclusions Our study indicates the existence of different selection constraint on binding sites at nucleosome occupied regions than at the nucleosome depleted regions. We found that the binding sites have a different rate of evolution at nucleosome occupied and depleted regions. Finally, using transcription factor binding site-directed mutagenesis experiment, we confirmed the difference in the impact of binding site changes on expression at these regions. Thus, our work demonstrates the importance of composite analysis of chromatin and transcriptional evolution.</p
    corecore