118 research outputs found

    The Discovery of XY Sex Chromosomes in a \u3cem\u3eBoa\u3c/em\u3e and \u3cem\u3ePython\u3c/em\u3e

    Get PDF
    For over 50 years, biologists have accepted that all extant snakes share the same ZW sex chromosomes derived from a common ancestor [1, 2, 3], with different species exhibiting sex chromosomes at varying stages of differentiation. Accordingly, snakes have been a well-studied model for sex chromosome evolution in animals [1, 4]. A review of the literature, however, reveals no compelling support that boas and pythons possess ZW sex chromosomes [2, 5]. Furthermore, phylogenetic patterns of facultative parthenogenesis in snakes and a sex-linked color mutation in the ball python (Python regius) are best explained by boas and pythons possessing an XY sex chromosome system [6, 7]. Here we demonstrate that a boa (Boa imperator) and python (Python bivittatus) indeed possess XY sex chromosomes, based on the discovery of male-specific genetic markers in both species. We use these markers, along with transcriptomic and genomic data, to identify distinct sex chromosomes in boas and pythons, demonstrating that XY systems evolved independently in each lineage. This discovery highlights the dynamic evolution of vertebrate sex chromosomes and further enhances the value of snakes as a model for studying sex chromosome evolution

    The Transcriptome of the Veiled Chameleon (\u3cem\u3eChamaeleo calyptratus\u3c/em\u3e): A Resource for Studying the Evolution and Development of Vertebrates

    Get PDF
    Purpose The veiled chameleon (Chamaeleo calyptratus) is an emerging model system for studying functional morphology and evolutionary developmental biology (evo‐devo). Chameleons possess body plans that are highly adapted to an arboreal life style, featuring laterally compressed bodies, split hands/ft for grasping, a projectile tongue, turreted independently moving eyes, and a prehensile tail. Despite being one of the most phenotypically divergent clades of tetrapods, genomic resources for chameleons are severely lacking. Methods To address this lack of resources, we used RNAseq to generate 288 million raw Illumina sequence reads from four adult tissues (male and female eyes and gonads) and whole embryos at three distinct developmental stages. We used these data to assemble a largely complete de novo transcriptome consisting of only 82 952 transcripts. In addition, a majority of assembled transcripts (67%) were successfully annotated. Results We then demonstrated the utility of these data in the context of studying visual system evolution by examining the content of veiled chameleon opsin genes to show that chameleons possess all five ancestral tetrapod opsins. Conclusion We present this de novo, annotated, multi‐tissue transcriptome assembly for the Veiled Chameleon, Chamaeleo calyptratus, as a resource to address a range of evolutionary and developmental questions. The associated raw reads and final annotated transcriptome assembly are freely available for use on NCBI and Figshare, respectively

    Solenodon genome reveals convergent evolution of venom in eulipotyphlan mammals

    Get PDF
    Venom systems are key adaptations that have evolved throughout the tree of life and typically facilitate predation or defense. Despite venoms being model systems for studying a variety of evolutionary and physiological processes, many taxonomic groups remain understudied, including venomous mammals. Within the order Eulipotyphla, multiple shrew species and solenodons have oral venom systems. Despite morphological variation of their delivery systems, it remains unclear whether venom represents the ancestral state in this group or is the result of multiple independent origins. We investigated the origin and evolution of venom in eulipotyphlans by characterizing the venom system of the endangered Hispaniolan solenodon (Solenodon paradoxus). We constructed a genome to underpin proteomic identifications of solenodon venom toxins, before undertaking evolutionary analyses of those constituents, and functional assessments of the secreted venom. Our findings show that solenodon venom consists of multiple paralogous kallikrein 1 (KLK1) serine proteases, which cause hypotensive effects in vivo, and seem likely to have evolved to facilitate vertebrate prey capture. Comparative analyses provide convincing evidence that the oral venom systems of solenodons and shrews have evolved convergently, with the 4 independent origins of venom in eulipotyphlans outnumbering all other venom origins in mammals. We find that KLK1s have been independently coopted into the venom of shrews and solenodons following their divergence during the late Cretaceous, suggesting that evolutionary constraints may be acting on these genes. Consequently, our findings represent a striking example of convergent molecular evolution and demonstrate that distinct structural backgrounds can yield equivalent functions

    Solenodon genome reveals convergent evolution of venom in eulipotyphlan mammals

    Get PDF
    Venom systems are key adaptations that have evolved throughout the tree of life and typically facilitate predation or defense. Despite venoms being model systems for studying a variety of evolutionary and physiological processes, many taxonomic groups remain understudied, including venomous mammals. Within the order Eulipotyphla, multiple shrew species and solenodons have oral venom systems. Despite morphological variation of their delivery systems, it remains unclear whether venom represents the ancestral state in this group or is the result of multiple independent origins. We investigated the origin and evolution of venom in eulipotyphlans by characterizing the venom system of the endangered Hispaniolan solenodon (Solenodon paradoxus). We constructed a genome to underpin proteomic identifications of solenodon venom toxins, before undertaking evolutionary analyses of those constituents, and functional assessments of the secreted venom. Our findings show that solenodon venom consists of multiple paralogous kallikrein 1 (KLK1) serine proteases, which cause hypotensive effects in vivo, and seem likely to have evolved to facilitate vertebrate prey capture. Comparative analyses provide convincing evidence that the oral venom systems of solenodons and shrews have evolved convergently, with the 4 independent origins of venom in eulipotyphlans outnumbering all other venom origins in mammals. We find that KLK1s have been independently coopted into the venom of shrews and solenodons following their divergence during the late Cretaceous, suggesting that evolutionary constraints may be acting on these genes. Consequently, our findings represent a striking example of convergent molecular evolution and demonstrate that distinct structural backgrounds can yield equivalent functions

    Molecular Adaptations for Sensing and Securing Prey and Insight into Amniote Genome Diversity from the Garter Snake Genome

    Get PDF
    Colubridae represents the most phenotypically diverse and speciose family of snakes, yet no well-assembled and annotated genome exists for this lineage. Here, we report and analyze the genome of the garter snake, Thamnophis sirtalis, a colubrid snake that is an important model species for research in evolutionary biology, physiology, genomics, behavior, and the evolution of toxin resistance. Using the garter snake genome, we show how snakes have evolved numerous adaptations for sensing and securing prey, and identify features of snake genome structure that provide insight into the evolution of amniote genomes. Analyses of the garter snake and other squamate reptile genomes highlight shifts in repeat element abundance and expansion within snakes, uncover evidence of genes under positive selection, and provide revised neutral substitution rate estimates for squamates. Our identification of Z and W sex chromosome-specific scaffolds provides evidence for multiple origins of sex chromosome systems in snakes and demonstrates the value of this genome for studying sex chromosome evolution. Analysis of gene duplication and loss in visual and olfactory gene families supports a dim-light ancestral condition in snakes and indicates that olfactory receptor repertoires underwent an expansion early in snake evolution. Additionally, we provide some of the first links between secreted venom proteins, the genes that encode them, and their evolutionary origins in a rear-fanged colubrid snake, together with new genomic insight into the coevolutionary arms race between garter snakes and highly toxic newt prey that led to toxin resistance in garter snakes

    Genome Evolution and the Future of Phylogenomics of Non-Avian Reptiles

    No full text
    Non-avian reptiles comprise a large proportion of amniote vertebrate diversity, with squamate reptiles—lizards and snakes—recently overtaking birds as the most species-rich tetrapod radiation. Despite displaying an extraordinary diversity of phenotypic and genomic traits, genomic resources in non-avian reptiles have accumulated more slowly than they have in mammals and birds, the remaining amniotes. Here we review the remarkable natural history of non-avian reptiles, with a focus on the physical traits, genomic characteristics, and sequence compositional patterns that comprise key axes of variation across amniotes. We argue that the high evolutionary diversity of non-avian reptiles can fuel a new generation of whole-genome phylogenomic analyses. A survey of phylogenetic investigations in non-avian reptiles shows that sequence capture-based approaches are the most commonly used, with studies of markers known as ultraconserved elements (UCEs) especially well represented. However, many other types of markers exist and are increasingly being mined from genome assemblies in silico, including some with greater information potential than UCEs for certain investigations. We discuss the importance of high-quality genomic resources and methods for bioinformatically extracting a range of marker sets from genome assemblies. Finally, we encourage herpetologists working in genomics, genetics, evolutionary biology, and other fields to work collectively towards building genomic resources for non-avian reptiles, especially squamates, that rival those already in place for mammals and birds. Overall, the development of this cross-amniote phylogenomic tree of life will contribute to illuminate interesting dimensions of biodiversity across non-avian reptiles and broader amniotes

    Genetic Surfing, Not Allopatric Divergence, Explains Spatial Sorting Of Mitochondrial Haplotypes In Venomous Coralsnakes

    No full text
    Strong spatial sorting of genetic variation in contiguous populations is often explained by local adaptation or secondary contact following allopatric divergence. A third explanation, spatial sorting by stochastic effects of range expansion, has been considered less often though theoretical models suggest it should be widespread, if ephemeral. In a study designed to delimit species within a clade of venomous coralsnakes, we identified an unusual pattern within the Texas coral snake (Micrurus tener): strong spatial sorting of divergent mitochondrial (mtDNA) lineages over a portion of its range, but weak sorting of these lineages elsewhere. We tested three alternative hypotheses to explain this pattern-local adaptation, secondary contact following allopatric divergence, and range expansion. Collectively, near panmixia of nuclear DNA, the signal of range expansion associated sampling drift, expansion origins in the Gulf Coast of Mexico, and species distribution modeling suggest that the spatial sorting of divergent mtDNA lineages within M. tener has resulted from genetic surfing of standing mtDNA variation-not local adaptation or allopatric divergence. Our findings highlight the potential for the stochastic effects of recent range expansion to mislead estimations of population divergence made from mtDNA, which may be exacerbated in systems with low vagility, ancestral mtDNA polymorphism, and male-biased dispersal

    Cryptic Genetic Diversity, Population Structure, And Gene Flow In The Mojave Rattlesnake (Crotalus Scutulatus)

    No full text
    The Mojave rattlesnake (Crotalus scutulatus) inhabits deserts and arid grasslands of the western United States and Mexico. Despite considerable interest in its highly toxic venom and the recognition of two subspecies, no molecular studies have characterized range-wide genetic diversity and population structure or tested species limits within C. scutulatus. We used mitochondrial DNA and thousands of nuclear loci from double-digest restriction site associated DNA sequencing to infer population genetic structure throughout the range of C. scutulatus, and to evaluate divergence times and gene flow between populations. We find strong support for several divergent mitochondrial and nuclear clades of C. scutulatus, including splits coincident with two major phylogeographic barriers: the Continental Divide and the elevational increase associated with the Central Mexican Plateau. We apply Bayesian clustering, phylogenetic inference, and coalescent-based species delimitation to our nuclear genetic data to test hypotheses of population structure. We also performed demographic analyses to test hypotheses relating to population divergence and gene flow. Collectively, our results support the existence of four distinct lineages within C. scutulatus, and genetically defined populations do not correspond with currently recognized subspecies ranges. Finally, we use approximate Bayesian computation to test hypotheses of divergence among multiple rattlesnake species groups distributed across the Continental Divide, and find evidence for co-divergence at this boundary during the mid-Pleistocene

    Data from: Composite measures of selection can improve the signal-to-noise ratio in genome scans

    Get PDF
    The growing wealth of genomic data is yielding new insights into the genetic basis of adaptation, but it also presents the challenge of extracting the relevant signal from multi-dimensional datasets. Different statistical approaches vary in their power to detect selection depending on the demographic history, type of selection, genetic architecture and experimental design. Here, we develop and evaluate new approaches for combining results from multiple tests, including multivariate distance measures and methods for combining P-values. We evaluate these methods on (i) simulated landscape genetic data analysed for differentiation outliers and genetic-environment associations and (ii) empirical genomic data analysed for selective sweeps within dog breeds for loci known to be selected for during domestication. We also introduce and evaluate how robust statistical algorithms can be used for parameter estimation in statistical genomics. On the simulated data, many of the composite measures performed well and had decreased variation in outcomes across many sampling designs. On the empirical dataset, methods based on combining P-values generally performed better with clearer signals of selection, higher significance of the signal, and in closer proximity to the known selected locus. Although robust algorithms could identify neutral loci in our simulations, they did not universally improve power to detect selection. Overall, a composite statistic that measured a robust multivariate distance from rank-based P-values performed the best. We found that composite measures of selection could improve the signal of selection in many cases, but they were not a panacea and their power is limited by the power of the univariate statistics they summarize. Since genome scans are widely used, improving inference for prioritizing candidate genes may be beneficial to medicine, agriculture, and breeding. Our results also have application to outlier detection in high-dimensional datasets and to combining results in meta-analyses in many disciplines. The compound measures we evaluate are implemented in the r package minotaur

    Transcriptome Assemblies

    No full text
    De novo Trinity assemblies of the colubrid snake eye transcriptomes
    corecore