890 research outputs found

    Vascular Architecture of the Lactating and Non-Lactating Teat of the Bitch: A Scanning Electron- and Light Microscope Study

    Get PDF
    Tissues from fourteen mammary glands of eight bitches were prepared for scanning electron microscopy of vascular corrosion casts and for histology to study the vasculature of the lactating and non-lactating teats. The densely-meshed mammary dermal capillary network formed ridges and troughs. The teat ducts were vascularized by a relatively densely-meshed capillary network which drained into veins longitudinally oriented to the ducts. Between eight and fifteen teat duct openings were seen on the tip of the teat, that were sometimes divided by a septum. The inner vascularization of the teat showed that the main papillary arteries divided into undulating secondary papillary arteries which presented numerous semi-constrictions and loops. Their structure may help during erection of the teat. Arteriovenous anastomoses found at different points may participate in blood flow maintenance during suckling, heat regulation and teat erection. Veins freely anastomosed and ran longitudinally to the axis of the teat. They exhibited numerous bicuspid valves. In non-lactating teats, vessels showed the same main architecture and characteristics mentioned above, although these were considerably less marked. The structure of the vascular elements in the teat of the bitch could favor blood flow during suckling and suggest that vessels adapt to the physiological situation

    Physiological stress and spatio-temporal fluctuations of food abundance and population density in Eurasian red squirrels

    Get PDF
    In continuously changing environments, variation of different ecological factors could affect the functioning of the hypothalamic-pituitary-adrenal (HPA) axis in wild mammals, increasing the secretion of glucocorticoids (GCs). In different animal species, GC concentrations are often used as a measure of the physiological stress response to environmental pressures, such as fluctuations in food abundance, population density, intra-and interspecific competition, and predation risk. However, previous studies reported contrasting results or did not find clear associations between physiological stress and environmental variables. Here, we used concentrations of faecal glucocorticoid metabolites (FGMs) as an integrated measure of physiological stress in wild Eurasian red squirrels (Sciurus vulgaris) from three study areas in the Italian Alps, to investigate whether variations in conifer-seed crop size and/or population density affected HPA axis activity. Squirrel density was estimated in each trapping session using the minimum number of animals alive, and annual counts of fresh cones from different conifer species were used to estimate annual food abundance (MJ/ha). We expected higher FGMs in response to increasing population density and/or decreasing food abundance, since these two variables could act as environmental stressors. Our results showed a lack of association between population density and FGMs and a significant effect of food abundance on FGMs. When conifer seed-crops were poor to moderate, FGMs increased with food abundance, while in the range of high seed-crops, FGMs remained first constant and then slightly decreased with a further increase in seed abundance. We also found differences in FGMs among seasons, as previously observed in this species. Our study adds further evidence that physiological stress can be influenced in different ways by environmental pressures and that long-term studies using individually marked animals are needed to disentangle the potential adaptive outcome of the physiological stress response in pulsed resource systems

    Monitoring and Discussing Health-Related Quality of Life in Adolescents With Type 1 Diabetes Improve Psychosocial Well-Being: A randomized controlled trial

    Get PDF
    OBJECTIVE—To test the effects of monitoring and discussing of health-related quality of life (HRQoL) in adolescents with type 1 diabetes in a multicenter randomized controlled trial

    Neurochemical Changes in the Mouse Hippocampus Underlying the Antidepressant Effect of Genetic Deletion of P2X7 Receptors.

    Get PDF
    Recent investigations have revealed that the genetic deletion of P2X7 receptors (P2rx7) results in an antidepressant phenotype in mice. However, the link between the deficiency of P2rx7 and changes in behavior has not yet been explored. In the present study, we studied the effect of genetic deletion of P2rx7 on neurochemical changes in the hippocampus that might underlie the antidepressant phenotype. P2X7 receptor deficient mice (P2rx7-/-) displayed decreased immobility in the tail suspension test (TST) and an attenuated anhedonia response in the sucrose preference test (SPT) following bacterial endotoxin (LPS) challenge. The attenuated anhedonia was reproduced through systemic treatments with P2rx7 antagonists. The activation of P2rx7 resulted in the concentration-dependent release of [3H]glutamate in P2rx7+/+ but not P2rx7-/- mice, and the NR2B subunit mRNA and protein was upregulated in the hippocampus of P2rx7-/- mice. The brain-derived neurotrophic factor (BDNF) expression was higher in saline but not LPS-treated P2rx7-/- mice; the P2rx7 antagonist Brilliant blue G elevated and the P2rx7 agonist benzoylbenzoyl ATP (BzATP) reduced BDNF level. This effect was dependent on the activation of NMDA and non-NMDA receptors but not on Group I metabotropic glutamate receptors (mGluR1,5). An increased 5-bromo-2-deoxyuridine (BrdU) incorporation was also observed in the dentate gyrus derived from P2rx7-/- mice. Basal level of 5-HT was increased, whereas the 5HIAA/5-HT ratio was lower in the hippocampus of P2rx7-/- mice, which accompanied the increased uptake of [3H]5-HT and an elevated number of [3H]citalopram binding sites. The LPS-induced elevation of 5-HT level was absent in P2rx7-/- mice. In conclusion there are several potential mechanisms for the antidepressant phenotype of P2rx7-/- mice, such as the absence of P2rx7-mediated glutamate release, elevated basal BDNF production, enhanced neurogenesis and increased 5-HT bioavailability in the hippocampus

    Aromatase inhibitor-induced modulation of breast density: clinical and genetic effects

    Get PDF
    Background: Change in breast density may predict outcome of women receiving adjuvant hormone therapy for breast cancer. We performed a prospective clinical trial to evaluate the impact of inherited variants in genes involved in oestrogen metabolism and signalling on change in mammographic percent density (MPD) with aromatase inhibitor (AI) therapy. Methods: Postmenopausal women with breast cancer who were initiating adjuvant AI therapy were enrolled onto a multicentre, randomised clinical trial of exemestane vs letrozole, designed to identify associations between AI-induced change in MPD and single-nucleotide polymorphisms in candidate genes. Subjects underwent unilateral craniocaudal mammography before and following 24 months of treatment. Results: Of the 503 enrolled subjects, 259 had both paired mammograms at baseline and following 24 months of treatment and evaluable DNA. We observed a statistically significant decrease in mean MPD from 17.1 to 15.1% (P<0.001), more pronounced in women with baseline MPD ⩾20%. No AI-specific difference in change in MPD was identified. No significant associations between change in MPD and inherited genetic variants were observed. Conclusion: Subjects with higher baseline MPD had a greater average decrease in MPD with AI therapy. There does not appear to be a substantial effect of inherited variants in biologically selected candidate genes

    The Activation of DNA Damage Detection and Repair Responses in Cleavage-Stage Rat Embryos by a Damaged Paternal Genome

    Get PDF
    Male germ cell DNA damage, after exposure to radiation, exogenous chemicals, or chemotherapeutic agents, is a major cause of male infertility. DNA-damaged spermatozoa can fertilize oocytes; this is of concern because there is limited information on the capacity of early embryos to repair a damaged male genome or on the fate of these embryos if repair is inadequate. We hypothesized that the early activation of DNA damage response in the early embryo is a critical determinant of its fate. The objective of this study was to assess the DNA damage response and mitochondrial function as a measure of the energy supply for DNA repair and general health in cleavage-stage embryos sired by males chronically exposed to an anticancer alkylating agent, cyclophosphamide. Male rats were treated with saline or cyclophosphamide (6 mg/kg/day) for 4 weeks and mated to naturally cycling females. Pronuclear two- and eight-cell embryos were collected for immunofluorescence analysis of mitochondrial function and biomarkers of the DNA damage response: γH2AX foci, 53BP1 reactivity, and poly(ADP-ribose) polymer formation. Mitochondrial activities did not differ between embryos sired by control- and cyclophosphamide-exposed males. At the two-cell stage, there was no treatment-related increase in DNA double-strand breaks; by the eight-cell stage, a significant increase was noted, as indicated by increased medium and large γH2AX foci. This was accompanied by a dampened DNA repair response, detected as a decrease in the nuclear intensity of poly(ADP-ribose) polymers. The micronuclei formed in cyclophosphamide-sired embryos contained large γH2AX foci and enhanced poly(ADP-ribose) polymer and 53BP1 reactivity compared with their nuclear counterparts. Thus, paternal cyclophosphamide exposure activated a DNA damage response in cleavage-stage embryos. Furthermore, this damage response may be useful in assessing embryo quality and developmental competence

    PLoS Genet

    Get PDF
    To generate highly specific and adapted immune responses, B cells diversify their antibody repertoire through mechanisms involving the generation of programmed DNA damage. Somatic hypermutation (SHM) and class switch recombination (CSR) are initiated by the recruitment of activation-induced cytidine deaminase (AID) to immunoglobulin loci and by the subsequent generation of DNA lesions, which are differentially processed to mutations during SHM or to double-stranded DNA break intermediates during CSR. The latter activate the DNA damage response and mobilize multiple DNA repair factors, including Parp1 and Parp2, to promote DNA repair and long-range recombination. We examined the contribution of Parp3 in CSR and SHM. We find that deficiency in Parp3 results in enhanced CSR, while SHM remains unaffected. Mechanistically, this is due to increased occupancy of AID at the donor (Smu) switch region. We also find evidence of increased levels of DNA damage at switch region junctions and a bias towards alternative end joining in the absence of Parp3. We propose that Parp3 plays a CSR-specific role by controlling AID levels at switch regions during CSR

    Depression and sickness behavior are Janus-faced responses to shared inflammatory pathways

    Get PDF
    It is of considerable translational importance whether depression is a form or a consequence of sickness behavior. Sickness behavior is a behavioral complex induced by infections and immune trauma and mediated by pro-inflammatory cytokines. It is an adaptive response that enhances recovery by conserving energy to combat acute inflammation. There are considerable phenomenological similarities between sickness behavior and depression, for example, behavioral inhibition, anorexia and weight loss, and melancholic (anhedonia), physio-somatic (fatigue, hyperalgesia, malaise), anxiety and neurocognitive symptoms. In clinical depression, however, a transition occurs to sensitization of immuno-inflammatory pathways, progressive damage by oxidative and nitrosative stress to lipids, proteins, and DNA, and autoimmune responses directed against self-epitopes. The latter mechanisms are the substrate of a neuroprogressive process, whereby multiple depressive episodes cause neural tissue damage and consequent functional and cognitive sequelae. Thus, shared immuno-inflammatory pathways underpin the physiology of sickness behavior and the pathophysiology of clinical depression explaining their partially overlapping phenomenology. Inflammation may provoke a Janus-faced response with a good, acute side, generating protective inflammation through sickness behavior and a bad, chronic side, for example, clinical depression, a lifelong disorder with positive feedback loops between (neuro)inflammation and (neuro)degenerative processes following less well defined triggers

    Type 2 diabetes, depressive symptoms and trajectories of cognitive decline in a national sample of community-dwellers: a prospective cohort study

    Get PDF
    We examined the individual and synergistic effects of type 2 diabetes and elevated depressive symptoms on memory and executive function trajectories over 10 and eight years of follow-up, respectively. Our sample comprised 10,524 community-dwellers aged ≥50 years in 2002±03 from the English Longitudinal Study of Ageing. With respect to memory (word recall), participants with either diabetes or elevated depressive symptoms recalled significantly fewer words compared with those free of these conditions (reference category), but more words compared with those with both conditions. There was a significant acceleration in the rate of memory decline in participants aged ≤50±64 years with both conditions (-0.27, 95% CI, -0.45 to -0.08, per study wave), which was not observed in those with either condition or aged ≥65 years. With respect to executive function (animal naming), participants aged 65 years with diabetes or those with elevated depressive symptoms named significantly fewer animals compared with the reference category, while those with both conditions named fewer animals compared with any other category. The rate of executive function decline was significantly greater in participants with both conditions (-0.54, 95% CI, -0.99 to -0.10; and ±0.71, 95% CI, -1.16 to -0.27, per study wave, for those aged 50±64 and ≥65 years, respectively), but not in participants with either condition. Diabetes and elevated depressive symptoms are inversely associated with memory and executive function, but, individually, do not accelerate cognitive decline. The co-occurrence of diabetes and elevated depressive symptoms significantly accelerates cognitive decline over time, especially among those aged 50±64 years
    corecore