632 research outputs found

    Design and standalone characterisation of a capacitively coupled HV-CMOS sensor chip for the CLIC vertex detector

    Get PDF
    The concept of capacitive coupling between sensors and readout chips is under study for the vertex detector at the proposed high-energy CLIC electron positron collider. The CLICpix Capacitively Coupled Pixel Detector (C3PD) is an active High-Voltage CMOS sensor, designed to be capacitively coupled to the CLICpix2 readout chip. The chip is implemented in a commercial 180180 nm HV-CMOS process and contains a matrix of 128×128128\times128 square pixels with 2525 ÎŒ\mum pitch. First prototypes have been produced with a standard resistivity of ∌20\sim20 Ω\Omegacm for the substrate and tested in standalone mode. The results show a rise time of ∌20\sim20 ns, charge gain of 190190 mV/ke−^{-} and ∌40\sim40 e−^{-} RMS noise for a power consumption of 4.84.8 ÎŒ\muW/pixel. The main design aspects, as well as standalone measurement results, are presented.Comment: 13 pages, 13 figures, 2 tables. Work carried out in the framework of the CLICdp collaboratio

    Design and Tests of the Silicon Sensors for the ZEUS Micro Vertex Detector

    Get PDF
    To fully exploit the HERA-II upgrade,the ZEUS experiment has installed a Micro Vertex Detector (MVD) using n-type, single-sided, silicon micro-strip sensors with capacitive charge division. The sensors have a readout pitch of 120 micrometers, with five intermediate strips (20 micrometer strip pitch). The designs of the silicon sensors and of the test structures used to verify the technological parameters, are presented. Results on the electrical measurements are discussed. A total of 1123 sensors with three different geometries have been produced by Hamamatsu Photonics K.K. Irradiation tests with reactor neutrons and Co-60 photons have been performed for a small sample of sensors. The results on neutron irradiation (with a fluence of 1 x 10^{13} 1 MeV equivalent neutrons / cm^2) are well described by empirical formulae for bulk damage. The Co-60 photons (with doses up to 2.9 kGy) show the presence of generation currents in the SiO_2-Si interface, a large shift of the flatband voltage and a decrease of the hole mobility.Comment: 33 pages, 25 figures, 3 tables, accepted for publication in NIM

    Pixel detector hybridisation with Anisotropic Conductive Films

    Get PDF
    Hybrid pixel detectors require a reliable and cost-effective interconnect technology adapted to the pitch and die sizes of the respective applications. During the ASIC and sensor R&D phase, and in general for small-scale applications, such interconnect technologies need to be suitable for the assembly of single-dies, typically available from Multi-Project-Wafer submissions. Within the CERN EP R&D programme and the AIDAinnova collaboration, innovative hybridisation concepts targeting vertex-detector applications at future colliders are under development. This contribution presents recent results of a newly developed in-house single-die interconnection process based on Anisotropic Conductive Film (ACF). The ACF interconnect technology replaces the solder bumps with conductive particles embedded in an adhesive film. The electro-mechanical connection between the sensor and the read-out chip is achieved via thermo-compression of the ACF using a flip-chip device bonder. A specific pad topology is required to enable the connection via conductive particles and create cavities into which excess epoxy can flow. This pixel-pad topology is achieved with an in-house Electroless Nickel Immersion Gold (ENIG) plating process that is also under development within the project. The ENIG and ACF processes are qualified with the Timepix3 ASIC and sensors, with 55 um pixel pitch and 14 um pad diameter. The ACF technology can also be used for ASIC-PCB/FPC integration, replacing wire bonding or large-pitch solder bumping techniques. This contribution introduces the ENIG plating and ACF processes and presents recent results on Timepix3 hybrid assemblies

    Beam Test of Silicon Strip Sensors for the ZEUS Micro Vertex Detector

    Get PDF
    For the HERA upgrade, the ZEUS experiment has designed and installed a high precision Micro Vertex Detector (MVD) using single sided micro-strip sensors with capacitive charge division. The sensors have a readout pitch of 120 microns, with five intermediate strips (20 micron strip pitch). An extensive test program has been carried out at the DESY-II testbeam facility. In this paper we describe the setup developed to test the ZEUS MVD sensors and the results obtained on both irradiated and non-irradiated single sided micro-strip detectors with rectangular and trapezoidal geometries. The performances of the sensors coupled to the readout electronics (HELIX chip, version 2.2) have been studied in detail, achieving a good description by a Monte Carlo simulation. Measurements of the position resolution as a function of the angle of incidence are presented, focusing in particular on the comparison between standard and newly developed reconstruction algorithms.Comment: 41 pages, 21 figures, 2 tables, accepted for publication in NIM

    Design and characterisation of the CLICTD pixelated monolithic sensor chip

    Get PDF
    A novel monolithic pixelated sensor and readout chip, the CLIC Tracker Detector (CLICTD) chip, is presented. The CLICTD chip was designed targeting the requirements of the silicon tracker development for the experiment at the Compact Linear Collider (CLIC), and has been fabricated in a modified 180 nm CMOS imaging process with charge collection on a high-resistivity p-type epitaxial layer. The chip features a matrix of 16×128 elongated channels, each measuring 300×30 ÎŒm2. Each channel contains 8 equidistant collection electrodes and analog readout circuits to ensure prompt signal formation. A simultaneous 8-bit Time-of-Arrival (with 10 ns time bins) and 5-bit Time-over-Threshold measurement is performed on the combined digital output of the 8 sub-pixels in every channel. The chip has been fabricated in two process variants and characterised in laboratory measurements using electrical test pulses and radiation sources. Results show a minimum threshold between 135 and 180 e‟ and a noise of about 14 e‟ RMS. The design aspects and characterisation results of the CLICTD chip are presented

    Pion and proton showers in the CALICE scintillator-steel analogue hadron calorimeter

    Full text link
    Showers produced by positive hadrons in the highly granular CALICE scintillator-steel analogue hadron calorimeter were studied. The experimental data were collected at CERN and FNAL for single particles with initial momenta from 10 to 80 GeV/c. The calorimeter response and resolution and spatial characteristics of shower development for proton- and pion-induced showers for test beam data and simulations using Geant4 version 9.6 are compared.Comment: 26 pages, 16 figures, JINST style, changes in the author list, typos corrected, new section added, figures regrouped. Accepted for publication in JINS

    Development of novel low-mass module concepts based on MALTA monolithic pixel sensors

    Full text link
    The MALTA CMOS monolithic silicon pixel sensors has been developed in the Tower 180 nm CMOS imaging process. It includes an asynchronous readout scheme and complies with the ATLAS inner tracker requirements for the HL-LHC. Several 4-chip MALTA modules have been built using Al wedge wire bonding to demonstrate the direct transfer of data from chip-to-chip and to read out the data of the entire module via one chip only. Novel technologies such as Anisotropic Conductive Films (ACF) and nanowires have been investigated to build a compact module. A lightweight flex with 17 {\mu}m trace spacing has been designed, allowing compact packaging with a direct attachment of the chip connection pads to the flex using these interconnection technologies. This contribution shows the current state of our work towards a flexible, low material, dense and reliable packaging and modularization of pixel detectors.Comment: 5 pages + 1 page references,8 figure

    The Time Structure of Hadronic Showers in highly granular Calorimeters with Tungsten and Steel Absorbers

    Get PDF
    The intrinsic time structure of hadronic showers influences the timing capability and the required integration time of hadronic calorimeters in particle physics experiments, and depends on the active medium and on the absorber of the calorimeter. With the CALICE T3B experiment, a setup of 15 small plastic scintillator tiles read out with Silicon Photomultipliers, the time structure of showers is measured on a statistical basis with high spatial and temporal resolution in sampling calorimeters with tungsten and steel absorbers. The results are compared to GEANT4 (version 9.4 patch 03) simulations with different hadronic physics models. These comparisons demonstrate the importance of using high precision treatment of low-energy neutrons for tungsten absorbers, while an overall good agreement between data and simulations for all considered models is observed for steel.Comment: 24 pages including author list, 9 figures, published in JINS

    Measurement of event shapes in deep inelastic scattering at HERA

    Get PDF
    Inclusive event-shape variables have been measured in the current region of the Breit frame for neutral current deep inelastic ep scattering using an integrated luminosity of 45.0 pb^-1 collected with the ZEUS detector at HERA. The variables studied included thrust, jet broadening and invariant jet mass. The kinematic range covered was 10 < Q^2 < 20,480 GeV^2 and 6.10^-4 < x < 0.6, where Q^2 is the virtuality of the exchanged boson and x is the Bjorken variable. The Q dependence of the shape variables has been used in conjunction with NLO perturbative calculations and the Dokshitzer-Webber non-perturbative corrections (`power corrections') to investigate the validity of this approach.Comment: 7+25 pages, 6 figure
    • 

    corecore