43 research outputs found

    Effect of processing on fracture toughness of silicon carbide as determined by Vickers indentations

    Get PDF
    Several alpha-SiC materials were processed by hot isostatic pressing (HIPing) and by sintering an alpha-SiC powder containing boron and carbon. Several beta-SiC materials were processed by HIPing a beta-SiC powder with boron and carbon additions. The fracture toughnesses K(sub 1c) of these beta- and alpha-SiC materials were estimated from measurements of Vickers indentations. The three formulas used to estimate K(sub 1c) from the indentation fracture patterns resulted in three ranges of K(sub 1c) estimates. Furthermore, each formula measured the effects of processing differently. All three estimates indicated that fine-grained HIPed alpha-SiC has a higher K(sub 1c) than coarsed-grained sintered alpha-SiC. Hot isostatically pressed beta-SiC, which had an ultrafine grain structure, exhibited a K(sub 1c) comparable to that of HIPed alpha-SiC

    Incorporating life cycle assessment and ecodesign tools for green chemical engineering: a case study of competences and learning outcomes assessment

    Get PDF
    Chemical engineers assume a broad range of roles in industry, spanning the development of new process designs, the maintenance and optimization of complex systems, and the production of intermediate materials, final products and new technologies. The technical aptitude that enables chemical engineers to fulfill these various roles along the value chain makes them compelling participants in the environmental assessment of the product in question. Therefore, the introduction of life cycle assessment (LCA) and ecodesign concepts into the chemical engineering curriculum is essential to help these future professionals to face design problems with a holistic view of the technical, economic, social and environmental impacts of their solutions. The teaching of these and other disciplines by means of student-centered methods, based on a holistic structure, have demonstrated better teamwork and communication skills. For that reason, this paper proposes a Micro (Assess-Analyze-Act) (M-3A) model of assessment mainly focused on closing the loop of the learning activities. This model has been applied to an ecodesign case study of the "University master's Degree in chemical engineering" of the University of Cantabria/University of the Basque Country, with positive feedback of the students. They felt that the approach has allowed them to utilize their analytical skills in quantifying a situation before applying other subjective measures, and that the public discussion of the results was a satisfactory element for improving their communication skills. Moreover, the students found that the workload was nicely adjusted, highlighting the acquisition of 4 competences preferentially: teamwork, creativity; relevance of environmental issues and initiative and entrepreneurship. Finally, the students suggest that the application of this methodology into their degree could motivate future students improving their performance

    Training in crisis communication and volcanic eruption forecasting:Design and evaluation of an authentic role-play simulation

    Get PDF
    We present an interactive, immersive, authentic role-play simulation designed to teach tertiary geoscience students in New Zealand to forecast and mitigate a volcanic crisis. Half of the participating group (i.e., the Geoscience Team) focuses on interpreting real volcano monitoring data (e.g., seismographs, gas output etc.) while the other half of the group (i.e., the Emergency Management Team) forecasts and manages likely impacts, and communicates emergency response decisions and advice to local communities. These authentic learning experiences were aimed at enhancing upper-year undergraduate students’ transferable and geologic reasoning skills. An important goal of the simulation was specifically to improve students’ science communication through interdisciplinary team discussions, jointly prepared, and delivered media releases, and real-time, high-pressure, press conferences. By playing roles, students experienced the specific responsibilities of a professional within authentic organisational structures. A qualitative, design-based educational research study was carried out to assess the overall student experience and self-reported learning of skills. A pilot and four subsequent iterations were investigated. Results from this study indicate that students found these role-plays to be a highly challenging and engaging learning experience and reported improved skills. Data from classroom observations and interviews indicate that the students valued the authenticity and challenging nature of the role-play although personal experiences and team dynamics (within, and between the teams) varied depending on the students’ background, preparedness, and personality. During early iterations, observation and interviews from students and instructors indicate that some of the goals of the simulation were not fully achieved due to: A) lack of preparedness, B) insufficient time to respond appropriately, C) appropriateness of roles and team structure, and D) poor communication skills. Small modifications to the design of Iterations 3 and 4 showed an overall improvement in the students’ skills and goals being reached. A communication skills instrument (SPCC) was used to measure self-reported pre- and post- communication competence in the last two iterations. Results showed that this instrument recorded positive shifts in all categories of self-perceived abilities, the largest shifts seen in students who participated in press conferences. Future research will be aimed at adapting this curricula to new volcanic and earthquake scenarios

    Adapting Experiential Learning to Develop Problem-Solving Skills in Deaf and Hard-of-Hearing Engineering Students

    No full text
    Individuals who are deaf and hard-of-hearing (DHH) are underrepresented in science, technology, engineering, and mathematics (STEM) professions, and this may be due in part to their level of preparation in the development and retention of mathematical and problem-solving skills. An approach was developed that incorporates experiential learning and best practices of STEM instruction to give first-year DHH students enrolled in a postsecondary STEM program the opportunity to develop problem-solving skills in real-world scenarios. Using an industrial engineering laboratory that provides manufacturing and warehousing environments, students were immersed in real-world scenarios in which they worked on teams to address prescribed problems encountered during the activities. The highly structured, Plan-Do-Check-Act approach commonly used in industry was adapted for the DHH student participants to document and communicate the problem-solving steps. Students who experienced the intervention realized a 14.6% improvement in problem-solving proficiency compared with a control group, and this gain was retained at 6 and 12 months, post-intervention

    Upside down/side up: problematizing teacher communication behaviors and learning outcomes in communication

    No full text
    Could teacher communication behaviors generally assumed to be positive ever be detrimental to students’ realization of particular outcomes? In this essay, we argue for increased scholarly attention to this question. We advocate a research agenda that explores the potential “downside”of teacher communication behaviors (TCBs); problematizing established TCBs in light of the National Communication Association’s Learning Outcomes in Communication (LOC)
    corecore