47 research outputs found

    Planting Prosperity and Harvesting Health: Trade-offs and Sustainability in the Oregon-Washington Regional Food System

    Get PDF
    This assessment reveals food system sustainability trends in Oregon and Washington, focusing specifically on the producers in both states and the consumers in the Portland- Vancouver region. We began the assessment by asking a group of food system stakeholders from Oregon and Washington to define broadly supported goals for a sustainable food system. They also helped us identify the data necessary to understand trends in the food system. This information can be used in the future to establish benchmarks and to assess future progress toward food system sustainability goals. Framed by stakeholder concerns, this report will assist program and policy decision makers in prioritizing efforts to shape and strengthen the regional food system. This information is also a foundation for building new and unique partnerships among organizations in food system planning

    Electrochemical and thermal detection of allergenic substance lysozyme with molecularly imprinted nanoparticles

    Get PDF
    Lysozyme (LYZ) is a small cationic protein which is widely used for medical treatment and in the food industry to act as an anti-bacterial agent; however, it can trigger allergic reactions. In this study, high-affinity molecularly imprinted nanoparticles (nanoMIPs) were synthesized for LYZ using a solid-phase approach. The produced nanoMIPs were electrografted to screen-printed electrodes (SPEs), disposable electrodes with high commercial potential, to enable electrochemical and thermal sensing. Electrochemical impedance spectroscopy (EIS) facilitated fast measurement (5–10 min) and is able to determine trace levels of LYZ (pM) and can discriminate between LYZ and structurally similar proteins (bovine serum albumin, troponin-I). In tandem, thermal analysis was conducted with the heat transfer method (HTM), which is based on monitoring the heat transfer resistance at the solid–liquid interface of the functionalized SPE. HTM as detection technique guaranteed trace-level (fM) detection of LYZ but needed longer analysis time compared to EIS measurement (30 min vs 5–10 min). Considering the versatility of the nanoMIPs which can be adapted to virtually any target of interest, these low-cost point-of-care sensors hold great potential to improve food safety

    A Network of Conserved Damage Survival Pathways Revealed by a Genomic RNAi Screen

    Get PDF
    Damage initiates a pleiotropic cellular response aimed at cellular survival when appropriate. To identify genes required for damage survival, we used a cell-based RNAi screen against the Drosophila genome and the alkylating agent methyl methanesulphonate (MMS). Similar studies performed in other model organisms report that damage response may involve pleiotropic cellular processes other than the central DNA repair components, yet an intuitive systems level view of the cellular components required for damage survival, their interrelationship, and contextual importance has been lacking. Further, by comparing data from different model organisms, identification of conserved and presumably core survival components should be forthcoming. We identified 307 genes, representing 13 signaling, metabolic, or enzymatic pathways, affecting cellular survival of MMS–induced damage. As expected, the majority of these pathways are involved in DNA repair; however, several pathways with more diverse biological functions were also identified, including the TOR pathway, transcription, translation, proteasome, glutathione synthesis, ATP synthesis, and Notch signaling, and these were equally important in damage survival. Comparison with genomic screen data from Saccharomyces cerevisiae revealed no overlap enrichment of individual genes between the species, but a conservation of the pathways. To demonstrate the functional conservation of pathways, five were tested in Drosophila and mouse cells, with each pathway responding to alkylation damage in both species. Using the protein interactome, a significant level of connectivity was observed between Drosophila MMS survival proteins, suggesting a higher order relationship. This connectivity was dramatically improved by incorporating the components of the 13 identified pathways within the network. Grouping proteins into “pathway nodes” qualitatively improved the interactome organization, revealing a highly organized “MMS survival network.” We conclude that identification of pathways can facilitate comparative biology analysis when direct gene/orthologue comparisons fail. A biologically intuitive, highly interconnected MMS survival network was revealed after we incorporated pathway data in our interactome analysis

    The multidimensional causal factors of ‘wet litter’ in chicken-meat production

    Get PDF
    The problem of ‘wet litter’, which occurs primarily in grow-out sheds for meat chickens (broilers), has been recognised for nearly a century. Nevertheless, it is an increasingly important problem in contemporary chicken-meat production as wet litter and associated conditions, especially footpad dermatitis, have developed into tangible welfare issues. This is only compounded by the market demand for chicken paws and compromised bird performance. This review considers the multidimensional causal factors of wet litter. While many causal factors can be listed it is evident that the critical ones could be described as micro-environmental factors and chief amongst them is proper management of drinking systems and adequate shed ventilation. Thus, this review focuses on these environmental factors and pays less attention to issues stemming from health and nutrition. Clearly, there are times when related avian health issues of coccidiosis and necrotic enteritis cannot be overlooked and the development of efficacious vaccines for the latter disease would be advantageous. Presently, the inclusion of phytate-degrading enzymes in meat chicken diets is routine and, therefore, the implication that exogenous phytases may contribute to wet litter is given consideration. Opinion is somewhat divided as how best to counter the problem of wet litter as some see education and extension as being more beneficial than furthering research efforts. However, it may prove instructive to assess the practice of whole grain feeding in relation to litter quality and the incidence of footpad dermatitis. Additional research could investigate the relationships between dietary concentrations of key minerals and the application of exogenous enzymes with litter quality

    Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

    Get PDF
    Background: In this study, we aimed to evaluate the effects of tocilizumab in adult patients admitted to hospital with COVID-19 with both hypoxia and systemic inflammation. Methods: This randomised, controlled, open-label, platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing several possible treatments in patients hospitalised with COVID-19 in the UK. Those trial participants with hypoxia (oxygen saturation <92% on air or requiring oxygen therapy) and evidence of systemic inflammation (C-reactive protein ≥75 mg/L) were eligible for random assignment in a 1:1 ratio to usual standard of care alone versus usual standard of care plus tocilizumab at a dose of 400 mg–800 mg (depending on weight) given intravenously. A second dose could be given 12–24 h later if the patient's condition had not improved. The primary outcome was 28-day mortality, assessed in the intention-to-treat population. The trial is registered with ISRCTN (50189673) and ClinicalTrials.gov (NCT04381936). Findings: Between April 23, 2020, and Jan 24, 2021, 4116 adults of 21 550 patients enrolled into the RECOVERY trial were included in the assessment of tocilizumab, including 3385 (82%) patients receiving systemic corticosteroids. Overall, 621 (31%) of the 2022 patients allocated tocilizumab and 729 (35%) of the 2094 patients allocated to usual care died within 28 days (rate ratio 0·85; 95% CI 0·76–0·94; p=0·0028). Consistent results were seen in all prespecified subgroups of patients, including those receiving systemic corticosteroids. Patients allocated to tocilizumab were more likely to be discharged from hospital within 28 days (57% vs 50%; rate ratio 1·22; 1·12–1·33; p<0·0001). Among those not receiving invasive mechanical ventilation at baseline, patients allocated tocilizumab were less likely to reach the composite endpoint of invasive mechanical ventilation or death (35% vs 42%; risk ratio 0·84; 95% CI 0·77–0·92; p<0·0001). Interpretation: In hospitalised COVID-19 patients with hypoxia and systemic inflammation, tocilizumab improved survival and other clinical outcomes. These benefits were seen regardless of the amount of respiratory support and were additional to the benefits of systemic corticosteroids. Funding: UK Research and Innovation (Medical Research Council) and National Institute of Health Research

    Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial

    Get PDF
    Background: Many patients with COVID-19 have been treated with plasma containing anti-SARS-CoV-2 antibodies. We aimed to evaluate the safety and efficacy of convalescent plasma therapy in patients admitted to hospital with COVID-19. Methods: This randomised, controlled, open-label, platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]) is assessing several possible treatments in patients hospitalised with COVID-19 in the UK. The trial is underway at 177 NHS hospitals from across the UK. Eligible and consenting patients were randomly assigned (1:1) to receive either usual care alone (usual care group) or usual care plus high-titre convalescent plasma (convalescent plasma group). The primary outcome was 28-day mortality, analysed on an intention-to-treat basis. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936. Findings: Between May 28, 2020, and Jan 15, 2021, 11558 (71%) of 16287 patients enrolled in RECOVERY were eligible to receive convalescent plasma and were assigned to either the convalescent plasma group or the usual care group. There was no significant difference in 28-day mortality between the two groups: 1399 (24%) of 5795 patients in the convalescent plasma group and 1408 (24%) of 5763 patients in the usual care group died within 28 days (rate ratio 1·00, 95% CI 0·93–1·07; p=0·95). The 28-day mortality rate ratio was similar in all prespecified subgroups of patients, including in those patients without detectable SARS-CoV-2 antibodies at randomisation. Allocation to convalescent plasma had no significant effect on the proportion of patients discharged from hospital within 28 days (3832 [66%] patients in the convalescent plasma group vs 3822 [66%] patients in the usual care group; rate ratio 0·99, 95% CI 0·94–1·03; p=0·57). Among those not on invasive mechanical ventilation at randomisation, there was no significant difference in the proportion of patients meeting the composite endpoint of progression to invasive mechanical ventilation or death (1568 [29%] of 5493 patients in the convalescent plasma group vs 1568 [29%] of 5448 patients in the usual care group; rate ratio 0·99, 95% CI 0·93–1·05; p=0·79). Interpretation: In patients hospitalised with COVID-19, high-titre convalescent plasma did not improve survival or other prespecified clinical outcomes. Funding: UK Research and Innovation (Medical Research Council) and National Institute of Health Research

    Supplementary information files for Synthesis and spectroscopic identification of nickel and cobalt layered hydroxides and hydroxynitrates

    No full text
    Supplementary files for article Synthesis and spectroscopic identification of nickel and cobalt layered hydroxides and hydroxynitratesThe formation of different nickel and cobalt layered hydroxide phases by a variety of solution and solid-state synthesis methods have been investigated. Initially, the preparative conditions were refined to generate single-phase products from metal(II) nitrate hexahydrate starting materials and were characterised by powder X-ray diffraction, vibrational spectroscopy and thermogravimetric analysis. As well as the brucite type β-M(OH)2 and the hydrotalcite-like [M(OH)2-x(H2O)x]x+ alpha-phases (where M = Ni, Co), two different hydroxynitrate phases were isolated with the generic formula M(OH)2-x(NO3)x with x = 0.67 and 1.0 (where M = Ni, Co). The reduction of symmetry of the nitrate anion from D3h to C2v allows the alpha-phases to be distinguished from the two different layered hydroxynitrate phases by both infrared and Raman spectroscopy through the loss of symmetry and concomitant splitting of the degenerate bands. The symmetric N-O stretch enables the two hydroxynitrate phases to be distinguished from one another through the sharp absorption bands at ca. 1000 cm-1 (x = 0.67) and ca. 1050 cm-1 (x = 1.0). The thermogravimetric analysis data of the phases showed key differences between the layered hydroxides, with anhydrous phases having singular weight losses over short temperature ranges and hydrated phases having multiple losses over more extended temperature ranges.</p

    Supplementary information files for Determination of layered nickel hydroxide phases in materials disordered by stacking faults and interstratification

    No full text
    Supplementary files for article Determination of layered nickel hydroxide phases in materials disordered by stacking faults and interstratificationThe formation of stacking faults and phase interstratification disorder in the layered nickel(II) hydroxides during the chemical precipitation synthesis of the materials using nickel(II) nitrate and potassium hydroxide solutions has been investigated in the temperature range of 5°C to 95°C and time intervals from 1 hour to 1 week. Stacking faulted materials were identified by broadening of the 00l reflections, while interstratified materials were identified through the splitting of the 001 into two lines. In contrast to the disorder concepts presented in previous studies of these materials, this work has shown through vibrational spectroscopy that both the alpha-phase and beta-phase hydroxides are present in materials described with stacking fault disorder, while layered hydroxysalts were additionally present in the materials considered to be interstratified. Standard mixtures of Ni3(OH)4(NO3)2 and β-Ni(OH)2 were prepared to investigate if the intensity of particular vibrational bands could be correlated with the proportion of the particular phases in mixtures. The intensities of the C2v nitrate infrared and Raman bands at 990 cm-1 and 1315 cm-1 were shown to correlate with the amount of layered hydroxynitrate incorporated in the phase, theoretically providing a method to determine the components in mixed compositions. Since disorder and phase impurities in layered nickel hydroxide materials affect both their electroactive stability and performance as cathode materials, this work has important implications in several research fields.</p

    Synthesis and spectroscopic identification of nickel and cobalt layered hydroxides and hydroxynitrates

    No full text
    The formation of different nickel and cobalt layered hydroxide phases by a variety of solution and solid-state synthesis methods have been investigated. Initially, the preparative conditions were refined to generate single-phase products from metal(II) nitrate hexahydrate starting materials and were characterised by powder X-ray diffraction, vibrational spectroscopy and thermogravimetric analysis. As well as the brucite type β-M(OH)2 and the hydrotalcite-like [M(OH)2-x(H2O)x]x+ alpha-phases (where M = Ni, Co), two different hydroxynitrate phases were isolated with the generic formula M(OH)2-x(NO3)x with x = 0.67 and 1.0 (where M = Ni, Co). The reduction of symmetry of the nitrate anion from D3h to C2v allows the alpha-phases to be distinguished from the two different layered hydroxynitrate phases by both infrared and Raman spectroscopy through the loss of symmetry and concomitant splitting of the degenerate bands. The symmetric N-O stretch enables the two hydroxynitrate phases to be distinguished from one another through the sharp absorption bands at ca. 1000 cm-1 (x = 0.67) and ca. 1050 cm-1 (x = 1.0). The thermogravimetric analysis data of the phases showed key differences between the layered hydroxides, with anhydrous phases having singular weight losses over short temperature ranges and hydrated phases having multiple losses over more extended temperature ranges.</p
    corecore