3,672 research outputs found

    An economic evaluation of vagus nerve stimulation as an adjunctive treatment to anti-seizure medications for the treatment of drug-resistant epilepsy in England.

    Get PDF
    INTRODUCTION: Anti-seizure medications (ASMs) are commonly used to prevent recurring epileptic seizures, but around a third of people with epilepsy fail to achieve an adequate response. Vagus nerve stimulation (VNS) is clinically recommended for people with drug-resistant epilepsy (DRE) who are not suitable for surgery, but the cost-effectiveness of the intervention has not recently been evaluated. The study objective is to estimate costs and quality-adjusted life-years (QALYs) associated with using VNS as an adjunct to ongoing ASM therapy, compared to the strategy of using only ASMs in the treatment of people with DRE, from an English National Health Service perspective. METHODS: A cohort state transition model was developed in Microsoft Excel to simulate costs and QALYs of the VNS + ASM and ASM only strategies. Patients could transition between five health states, using a 3-month cycle length. Health states were defined by an expected percentage reduction in seizure frequency, derived from randomized control trial data. Costs included the VNS device as well as its installation, setup, and removal; ASM therapy; adverse events associated with VNS (dyspnea, hoarseness, and cough); and health-state costs associated with epilepsy including hospitalizations, emergency department visits, neurologist visits, and primary care visits. A range of sensitivity analyses, including probabilistic sensitivity analysis, were run to assess the impact of parameter and structural uncertainty. RESULTS: In the base case, VNS + ASM had an estimated incremental cost-effectiveness ratio (ICER) of £17,771 per QALY gained compared to ASMs alone. The cost-effective ICER was driven by relative reductions in expected seizure frequency and the differences in health care resource use associated therewith. Sensitivity analyses found that the amount of resource use per epilepsy-related health state was a key driver of the cost component. CONCLUSIONS: VNS is expected to be a cost-effective intervention in the treatment of DRE in the English National Health Service

    On carbon and oxygen isotope ratios in starburst galaxies: New data from NGC253 and Mrk231 and their implications

    Get PDF
    Using the IRAM 30-m telescope, CN and CO isotopologues have been measured toward the central regions of the nearby starburst galaxy NGC253 and the prototypical ultraluminous infrared galaxy Mrk231. In NGC253, the 12C/13C ratio is 40+-10. Assuming that the ratio also holds for the CO emitting gas, this yields 16O/18O = 145+-36 and 16O/17O = 1290+-365 and a 32S/34S ratio close to that measured for the local interstellar medium (20-25). No indication for vibrationally excited CN is found. Peak line intensity ratios between NGC253 and Mrk231 are ~100 for 12C16O and 12C18O J=1-0, while the ratio for 13C16O J=1-0 is ~250. This and similar 13CO and C18O line intensities in the J=1-0 and 2-1 transitions of Mrk231 suggest 12C/13C ~ 100 and 16O/18O ~ 100, in agreement with values obtained for the less evolved ultraluminous merger Arp220. Also accounting for other extragalactic data, 12C/13C ratios appear to vary over a full order of magnitude, from >100 in ultraluminous high redshift galaxies to ~100 in more local such galaxies to ~40 in weaker starbursts not undergoing a large scale merger to 25 in the Central Molecular Zone of the Milky Way. With 12C being predominantly synthesized in massive stars, while 13C is mostly ejected by longer lived lower mass stars at later times, this is qualitatively consistent with our results of decreasing carbon isotope ratios with time and rising metallicity. It is emphasized, however, that both infall of poorly processed material, initiating a nuclear starburst, as well as the ejecta from newly formed massive stars (in particular in case of a top-heavy stellar initial mass function) can raise the carbon isotope ratio for a limited amount of time.Comment: Accepted by Astronomy & Astrophysics, 6 figures, 4 table

    Gas-Phase Synthesis for Label-Free Biosensors: Zinc-Oxide Nanowires Functionalized with Gold Nanoparticles

    Get PDF
    Metal oxide semiconductor nanowires have important applications in label-free biosensing due to their ease of fabrication and ultralow detection limits. Typically, chemical functionalization of the oxide surface is necessary for specific biological analyte detection. We instead demonstrate the use of gas-phase synthesis of gold nanoparticles (Au NPs) to decorate zinc oxide nanowire (ZnO NW) devices for biosensing applications. Uniform ZnO NW devices were fabricated using a vapor-solid-liquid method in a chemical vapor deposition (CVD) furnace. Magnetron-sputtering of a Au target combined with a quadrupole mass filter for cluster size selection was used to deposit Au NPs on the ZnO NWs. Without additional functionalization, we electrically detect DNA binding on the nanowire at sub-nanomolar concentrations and visualize individual DNA strands using atomic force microscopy (AFM). By attaching a DNA aptamer for streptavidin to the biosensor, we detect both streptavidin and the complementary DNA strand at sub-nanomolar concentrations. Au NP decoration also enables sub-nanomolar DNA detection in passivated ZnO NWs that are resilient to dissolution in aqueous solutions. This novel method of biosensor functionalization can be applied to many semiconductor materials for highly sensitive and label-free detection of a wide range of biomolecules

    Timescale of Petrogenetic Processes Recorded in the Mount Perkins Magma System, Northern Colorado River Extension Corridor, Arizona

    Get PDF
    The Miocene Mt. Perkins Pluton is a small composite intrusive body emplaced in the shallow crust as four separate phases during the earliest stages of crustal extension. Phase 1 (oldest) consists of isotropic hornblende gabbro and a layered cumulate sequence. Phase 2 consists of quartz monzonite to quartz monzodiorite hosting mafic microgranitoid enclaves. Phase 3 is composed of quartz monzonite and is subdivided into mafic enclave-rich zones and enclave-free zones. Phase 4 consists of aphanitic dikes of mafic, intermediate and felsic compositions hosting mafic enclaves. Phases 2-4 enclaves record significant isotopic disequilibrium with surrounding granitoid host rocks, but collectively enclaves and host rocks form a cogenetic suite exhibiting systematic variations in Nd-Sr-Pb isotopes that correlate with major and trace elements. Phases 2-4 record multiple episodes of magma mingling among cogenetic hybrid magmas that formed via magma mixing and fractional crystallization at a deeper crustal. The mafic end-member was alkali basalt similar to nearby 6-4 Ma basalt with enriched OIB-like trace elements and Nd-Sr-Pb isotopes. The felsic end-member was a subalkaline crustal-derived magma. Phase 1 isotropic gabbro exhibits elemental and isotopic compositional variations at relatively constant SiO2, suggesting generation of isotropic gabbro by an open-system process involving two mafic end-members. One end-member is similar in composition to the OIB-like mafic end-member for phases 2-4; the second is similar to nearby 11-8 Ma tholeiite basalt exhibiting low epsilon (sub Nd), and depleted incompatible trace elements. Phase 1 cumulates record in situ fractional crystallization of an OIB-like mafic magma with isotopic evidence of crustal contamination by partial melts generated in adjacent Proterozoic gneiss. The Mt Perkins pluton records a complex history in a lithospheric scale magma system involving two distinct mantle-derived mafic magmas and felsic magma sourced in the crust. Mixing and fractional crystallization of these magmas at various levels in the crust generated a suite of intermediate composition magmas. U-Pb zircon SHRIMP ages of phase 1 (15.7 +/- 0.2 Ma), phase 3 (15.8 +/- 0.2 Ma) and phase 4 (15.4 +/- 0.3 Ma) document a 100-300k year timescale for petrogenetic processes recorded in the Mt Perkins magma system

    Evidence of convective rolls in a sunspot penumbra

    Full text link
    aims: We study the recently discovered twisting motion of bright penumbral filaments with the aim of constraining their geometry and the associated magnetic field. methods: A large sunspot located 40\degr from disk center was observed at high resolution with the 1-m Swedish Solar Telescope. Inversions of multi-wavelength polarimetric data and speckle reconstructed time series of continuum images were used to determine proper motions, as well as the velocity and magnetic structure in penumbral filaments. results: The continuum movie reveals apparent lateral motions of bright and dark structures inside bright filaments oriented parallel to the limb, confirming recent Hinode results. In these filaments we measure upflows of 1.1km/s\approx 1.1 \mathrm{km/s} on their limbward side and weak downflows on their centerward side. The magnetic field in them is significantly weaker and more horizontal than in the adjacent dark filaments. conclusions: The data indicate the presence of vigorous convective rolls in filaments with a nearly horizontal magnetic field. These are separated by filaments harbouring stronger, more vertical fields. Because of reduced gas pressure, we see deeper into the latter. When observed near the limb, the disk-centerward side of the horizontal-field filaments appear bright due to the \textit{hot wall} effect known from faculae. We estimate that the convective rolls transport most of the energy needed to explain the penumbral radiative flux.Comment: 4 pages, 4 figures, letter to Astronomy & Astrophysic

    Modulation of actin polymerization affects nucleocytoplasmic transport in multiple forms of amyotrophic lateral sclerosis

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of unknown etiology. Although defects in nucleocytoplasmic transport (NCT) may be central to the pathogenesis of ALS and other neurodegenerative diseases, the molecular mechanisms modulating the nuclear pore function are still largely unknown. Here we show that genetic and pharmacological modulation of actin polymerization disrupts nuclear pore integrity, nuclear import, and downstream pathways such as mRNA post-transcriptional regulation. Importantly, we demonstrate that modulation of actin homeostasis can rescue nuclear pore instability and dysfunction caused by mutant PFN1 as well as by C9ORF72 repeat expansion, the most common mutation in ALS patients. Collectively, our data link NCT defects to ALS-associated cellular pathology and propose the regulation of actin homeostasis as a novel therapeutic strategy for ALS and other neurodegenerative diseases

    Density of Superfluid Helium Droplets

    Full text link
    The classical integral cross sections of large superfluid 4He_N droplets and the number of atoms in the droplets (N=10^3-10^4) have been measured in molecular beam scattering experiments. These measurements are found to be in good agreement with the cross sections predicted from density functional calculations of the radial density distributions with a 10-90 % surface thickness of 5.7\AA. By using a simple model for the density profile of the droplets a thickness of about 6-8\AA is extracted directly from the data.Comment: 27 pages, REVTeX, 5 postscript figure

    Vertebral bone marrow fat, bone mineral density and diabetes : The Osteoporotic Fractures in Men (MrOS) study

    Get PDF
    Elevated vertebral bone marrow fat (BMF) among individuals with osteoporosis has been established in histomorphometric studies. Several studies have found a negative correlation between BMF and bone mineral density (BMD) at the spine in men and women across different age groups. Animal studies have also observed bone loss with increased BMF in mice with induced diabetes. Our study objective was to test the hypothesis that the association between BMF and BMD varies by diabetic status. We performed a cross-sectional study of 156 men aged 74-96years from the Osteoporotic Fractures in Men study at the Pittsburgh clinical site. All men had spine BMF scans using proton magnetic resonance spectroscopy and spine and hip BMD scans by dual-energy X-ray absorptiometry. BMF was expressed as lipid to "lipid+water" ratio (%). Men were considered diabetic if they self-reported a physician diagnosis of diabetes, diabetes medication or had a fasting glucose ≥126mg/dl. Men with diabetes (n=38) had a significantly higher spine BMF (58.9 vs. 54.6%, p=0.0035), spine BMD (1.20 vs. 1.10g/cm(2), P=0.007) and total hip BMD (1.00 vs. 0.94g/cm(2), p=0.04) than those without, while no differences were observed for body weight, body mass index or waist circumference. Pearson correlation tests showed no significant correlation of spine BMF with age or BMD in non-diabetics. Significant inverse correlations were observed between BMF and BMD (-0.30 for femoral neck and -0.39 for total hip) among diabetic men. In conclusion, men with diabetes had a higher BMF compared to non-diabetic men. The correlation between BMF and BMD differed by diabetes status. Further investigation of the association of diabetes with BMF and BMD may provide a better understanding of the high fracture rates among individuals with diabetes despite their higher BMD

    SST/CRISP Observations of Convective Flows in a Sunspot Penumbra

    Full text link
    Context. Recent discoveries of intensity correlated downflows in the interior of a sunspot penumbra provide direct evidence for overturning convection, adding to earlier strong indications of convection from filament dynamics observed far from solar disk center, and supporting recent simulations of sunspots. Aims. Using spectropolarimetric observations obtained at a spatial resolution approaching 0'.'1 with the Swedish 1-m Solar Telescope (SST) and its spectropolarimeter CRISP, we investigate whether the convective downflows recently discovered in the C i line at 538.03 nm can also be detected in the wings of the Fe i line at 630.15 nm Methods. We make azimuthal fits of the measured LOS velocities in the core and wings of the 538 nm and 630 nm lines to disentangle the vertical and horizontal flows. To investigate how these depend on the continuum intensity, the azimuthal fits are made separately for each intensity bin. By using spatially high-pass filtered measurements of the LOS component of the magnetic field, the flow properties are determined separately for magnetic spines (relatively strong and vertical field) and inter-spines (weaker and more horizontal field). Results. The dark convective downflows discovered recently in the 538.03 nm line are evident also in the 630.15 nm line, and have similar strength. This convective signature is the same in spines and inter-spines. However, the strong radial (Evershed) outflows are found only in the inter-spines. Conclusions. At the spatial resolution of the present SST/CRISP data, the small-scale intensity pattern seen in continuum images is strongly related to a convective up/down flow pattern that exists everywhere in the penumbra. Earlier failures to detect the dark convective downflows in the interior penumbra can be explained by inadequate spatial resolution in the observed data.Comment: Revised and expanded by 2.5 pages. Fig. 14 adde
    corecore