233 research outputs found

    Kinematic analysis of complex gear mechanisms

    Get PDF
    This paper presents a general kinematic analysis method for complex gear mechanisms. This approach involves the null-space of the adjacency matrix associated with the graph of the mechanism weighted by complex coecients. It allows to compute the rotational speed ratios of all the links and the frequency of all the contacts in this mechanism(including roll bearings). This approach is applied to various examples including a two degrees of freedom car differential

    The impact of local masses and inertias on the dynamic modelling of flexible manipulators

    Get PDF
    After a brief review of the recent literature dealing with flexible multi-body modelling for control design purpose, the paper first describes three different techniques used to build up the dynamic model of SECAFLEX, a 2 d.o.f. flexible in-plane manipulator driven by geared DC motors : introduction of local fictitious springs, use of a basis of assumed Euler-Bernouilli cantilever-free modes and of 5th order polynomial modes. This last technique allows to take easily into account local masses and inertias, which appear important in real-life experiments. Transformation of the state space models obtained in a common modal basis allows a quantitative comparison of the results obtained, while Bode plots of the various interesting transfer functions relating input torques to output in-joint and tip mea-surements give rather qualitative results. A parametric study of the effect of angular configuration changes and physical parameter modifications (including the effect of rotor inertia) shows that the three techniques give similar results up to the first flexible modes of each link when concentrated masses and inertias are present. From the control point of view, “pathological” cases are exhibited : uncertainty in the phase of the non-colocated transfer functions, high dependence of the free modes in the rotor inertia value. Robustness of the control to these kinds of uncertainties appears compulsory

    Gain-scheduling through continuation of observer-based realizations-applications to H∞ and μ controllers

    Get PDF
    The dynamic behavior of gain scheduled controllers is highly depending on the state-space representations adopted for the family of lienar controllers designed on a set of operating conditions. In this paper, a technique for determining a set of consistent and physically motivated linear state-space transformations to be applied to the original set of linear controllers is proposed. After transformation, these controllers exhibits an-observer-based structure are therefore easily interpolted and implemented

    Unstationnary control of a launcher using observer-based structures

    Get PDF
    This paper deals with the design of a gain-scheduled controller for the attitude control of a launcher during atmospheric flight. The design is characterized by classical requirements such as phase/gain margins and flexible mode attenuations as well as time-domain constraints on the response of angle of attack to a worstcase wind profile. Moreover, these requirements must be fulfilled over the full atmospheric flight envelope and must be robust against parametric uncertainties. In order to achieve this goal, we propose a method based on minimal observer-based realizations of arbitrary stabilizing compensators. An original technique to assign the closed-loop dynamics between the state-feedback dynamics and the state-estimation dynamics is presented for the H∞ compensators case. The structure is used to mix various specifications through the Cross Standard Form(CSF) and to perform a smooth gain scheduling interpolation through an Euler-Newton algorithm of continuation

    Linear dynamic modeling of spacecraft with various flexible appendages and on-board angular momentums

    Get PDF
    We present here a method and some tools developed to build linear models of multi-body systems for space applications (typically satellites). The multi-body system is composed of a main body (hub) fitted with rigid and flexible appendages (solar panels, antennas, propellant tanks,...) and on-board angular momentums (flywheels, control moment gyros). Each appendage can be connected to the hub by a cantilever joint or a pivot joint. More generally, our method can be applied to any open mechanical chain. In our approach, the rigid six degrees of freedom (d.o.f) (three translational and three rotational) are treated all together. That is very convenient to build linear models of complex multi-body systems. Then, the dynamics model used to design AOCS, i.e. the model between forces and torques (applied on the hub) and angular and linear position and velocity of the hub, can be derived very easily. This model can be interpreted using block diagram representation

    Cross Standard Form for generalized inverse problem: application to lateral flight control of a highly flexible aircraft

    Get PDF
    This paper introduces the Cross Standard Form (CSF) which can be considered as a generalization of the LQ inverse problem to the H2 and H infinity inverse problems. The CSF allows to formulate a standard problem on which an initial compensator can be obtained by H infinity or H2 synthesis. The definition of the CSF is based on the possibility to construct equivalent observer-based realization of a given compensator. From the robust control application point of view, the general idea is to apply the CSF to a first compensator satisfying nominal performances to initialize a H infinity procedure in order to handle frequency-domain or parametric robustness specifications. These state observer based tools are then applied to design lateral flight control of a highly flexible aircraft

    Flexible joint control : robustness analysis of the collocated and non-collocated feedbacks

    Get PDF
    In this paper, we propose a discussion on the robustness and performance properties of a proportional-derivative controller applied to a very flexible joint. Because of the flexible mode due to in-joint compliance, the classical collocated control does not allow to obtain good rigid mode dynamics with a correct phase margin in low and high frequency, and the non-collocated control does not allow to damp correctly the rotor mode. The simultaneous analysis of discrete root loci and Nichols plots leads to a phase control law with a derivative term built from both input and output velocities. Simulations taking into account various real non-linearities and measurement imperfections are proposed to validate this improved control design

    Lateral fligh control design for a highly flexible aircraft using a nonsmooth method

    Get PDF
    This paper describes a nonsmooth optimization technique for designing a lateral flight control law for a highly flexible aircraft. Flexible modes and high-dimensional models pose a major challenge to modern control design tools. We show that the nonsmooth approach offers potent and flexible alternatives in this difficult context. More specifically, the proposed technique is used to achieve a mix of frequency domain as well as time domain requirements for a set of different flight conditions

    Launcher attitude control: some additional design and optimization tools

    Get PDF
    This paper deals with the launcher attitude control during atmospheric flight. A two step approach combining an H1 control design and an optimization procedure is proposed. The first step is multi-objective stationary H1 design based on the Cross Standard Form. It provides easily a first rough solution from a few physical tuning parameters. The second step is a fine tuning using an multi-constraint satisfaction algorithm. This algorithm enables the certification criteria computed on the validation model to be met and is also used to propagate the nominal tuning to the full flight envelope
    corecore