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Abstract

We present here a method and some tools developed to build linear models of multi-body systems for
space applications (typically satellites). The multi-body system is composed of a main body (hub) fitted
with rigid and flexible appendages (solar panels, antennas, propellant tanks, ...etc) and on-board angular
momentums (flywheels, control moment gyros). Each appendage can be connected to the hub by a cantilever
joint or a pivot joint. More generally, our method can be applied to any open mechanical chain. In our
approach, the rigid six degrees of freedom (d.o.f) (three translational and three rotational) are treated all
together. That is very convenient to build linear models of complex multi-body systems. Then, the dynamics
model used to design AOCS, i.e. the model between forces and torques (applied on the hub) and angular and
linear position and velocity of the hub, can be derived very easily. This model can be interpreted using block
diagram representation.
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INTRODUCTION

Spacecraft are very complex mechanical multi-body systems including flexible and/or rotating appendages. The design of
the AOCS requires a linear model taking into account all the rigid and flexible couplings between the hub (where the AOCS
acts) and the various appendages. Note that the linear assumption is quite realistic for such systems since perturbations
and so motions are very small (except for very dexterous observation satellites). This linear assumption is furthermore
valid in the field of future missions for deep space exploration involving formation flying of several spacecraft. For this
kind of formation flying mission, it is more and more accepted that the 3 rotation d.o.f. and the 3 translation d.o.f. must
be treated all together ([1]).

Therefore, a 6 d.o.f. model including couplings between rotations and translations must be developed. Lots of multi-body
software are available to build such kind of models but they address the nonlinear behavior and they are too much loud to
be handled at the early prototyping phase. So a tool is required to develop quickly the dynamic model and to prototype
the AOCS or to analyze and to optimize the main dynamic parameters of the mechanical structure or AOCS and finally to
assess the global performance of the system.

Here we propose some tools developed with MATLAB/SIMULINK to built efficiently the linear dynamic model of any
open mechanical chain. More precisely, the linear multi-body model considered here is depicted on Figure 1. This model,
called inverse dynamic model, gives the relationship between the inputs, which are composed of:

• the six external forces
−→
F ext and torques

−→
T

ext,O
applied on the hub (base) by the Attitude and Orbit Control Sys-

tem(AOCS) at a reference point O,

• the n drive torques Cm(i) applied at the pivot joint i (i = 1, · · · , n, n is the number of pivot joints) between an
appendage and the hub,
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and the output, which is composed of:

• the six linear and angular accelerations of the hub at point O (resp. −→a O and −̇→ω ),

• the angular acceleration θ̈(i) of the pivot point i (for i = 1, · · · , n).

Figure 1. General inverse dynamic model

This paper introduces gradually each complexity of the modeling problem. The first section concerns the simplest case
of two interconnected rigid bodies. Let us recall that the approach assumes that the hub (or central body or base) is rigid.
In the second section flexible appendages are taken into account using effective mass representation. On-board angular
momentum are taken into account in section 3. The way how a motorized pivot joint between an appendage and the hub
can be taken into account is described in section 4. A model validation is proposed in section 5.

1. INTERCONNECTED RIGID BODIES MODEL

Let us consider a spacecraft composed of a rigid main body or hub (called here after the base B) with its center of mass
at point G, and a rigid appendage A (with its center of mass C) cantilevered to the base B at point P (see Figure 4). Let
us denote RG = (G, x, y, z) the reference frame rigidly attached to the hub at G and RP = (P, x, y, z) the same frame
translated to point P . In the sequel the dynamic model of the appendage will be obviously given in the frame RP .

Figure 2. A simple spacecraft model, two rigid bodies connected at point P

1.1. Dynamic model of the base B at point G

Let us consider the base B alone (without appendage), according to the NEWTON’s and EULER’s equations, the dynamic
model of the base B at its center of mass G reads as follows: −→

F
ext

−→
T

ext,G

 = DB
G

[ −→a G
−̇→ω

]
=

[
mBI3 0

0 JBG

][ −→a G
−̇→ω

]
(1)



where

• mB is the mass of the body B,

• In is the n× n identity matrix,

• JBG is the inertia matrix (in kg.m2) at point G of the body B in the frame RG,

• −→ω is the absolute angular velocity vector of the body B (i.e. the angular velocity of the frame RG or frame RP
w.r.t the inertial frame Ri in (rad/s)).

• and −̇→ω = d−→ω
dt |RG

= d−→ω
dt |Ri

, since −→ω has the same coordinates in RG and Ri.

In (1), the three translational accelerations and the three angular accelerations are considered together. Note that for the
rotation dynamics, the relation

−→
T ext,G = JBG

−̇→ω is a linear approximation, the actual non-linear dynamic equation reads:

−→
T ext,G =

d
−→
LB
G

dt
|Ri (2)

where
−→
LB
G = JBG

−̇→ω is the angular momentum of the base B at point G. Then, using the time-domain derivation in the
body frame of base B (in which, JBG is constant), it comes:

−→
T ext,G = JBG

−̇→ω +−→ω × JBG−→ω

where × is the cross product.

The nonlinear term (−→ω × JBG
−→ω ) on the right hand side of the equation above can be neglected if angular velocity −→ω is

small enough (linear assumption).

1.2. Transport of the dynamic model of B from point G to point P

Let us recall that the relation between the velocities at points P and G is :

−→
V P =

−→
V G +

−−→
PG×−→ω =

−→
V G + (∗PG)−→ω (3)

where (∗PG) is the antisymmetric matrix associated with the vector
−−→
PG. That is, if [x, y, z]TRc

is the coordinate vector

of
−−→
GP projected in any frame Rc then (∗GP ) reads:

(∗GP ) =

[ 0 −z y
z 0 −x
−y x 0

]
Rc

, (∗PG) =

[ 0 z −y
−z 0 x
y −x 0

]
Rc

.

Note that equation (3) allows a vector product to be transformed into a matrix-vector product and can be projected in any
frame.

Then, the six d.o.f. kinematic vectors νG and νP of the body B respectively at points G and P are given by :[ −→
V G−→ω

]
︸ ︷︷ ︸

νG

=
[
I3 (∗GP )
0 I3

]
︸ ︷︷ ︸

τGP

[ −→
V P−→ω

]
︸ ︷︷ ︸

νP

(4)

τGP is called the (6× 6) kinematic model between the points G and P .

Now, let us consider the inertial accelerations at points P and G :

−→a P =
d
−→
V P

dt
|Ri

and −→a G =
d
−→
V G

dt
|Ri



It is well-known that :
−→a P = −→a G + −̇→ω ×

−−→
GP +−→ω ×

((
d
−−→
GP

dt

)
|RG

+−→ω ×
−−→
GP

)
For a rigid body, (

d
−−→
GP

dt

)
|RG

= 0

and, as explained before, all nonlinear terms can be neglected. The acceleration at point P is then deduced from the
acceleration at point G by the linear relation :

−→a P = −→a G + (∗PG)−̇→ω (5)

From equation (5) one can derive the following kinematic relationship :[ −→a G
−̇→ω

]
= τ

GP

[ −→a P
−̇→ω

]
=

[
I3 (∗GP )

0 I3

][ −→a P
−̇→ω

]
. (6)

To obtain the relationship between the 6 d.o.f external force vectors at point G and at point P , it is interesting to express
the external force power computed along a virtual velocity field :

Pext =

[ −→
V G

−→ω

]T  −→
F ext

−→
T

ext,G

 =

[ −→
V P

−→ω

]T  −→
F ext

−→
T ext,P

 (7)

Combining (4) and (7), one can easily obtain : −→
F

ext

−→
T ext,P

 = τT
GP

 −→
F

ext

−→
T

ext,G

 =

[
I3 0

−(∗GP ) I3

] −→
F

ext

−→
T

ext,G

 (8)

From (6) and (8), the direct dynamic model DB
P of the base B at point P becomes:

 −→
F

ext

−→
T

ext,P

 = τT
GP

[
mBI3 0

0 JBG

]
τ

GP

[ −→a P
−̇→ω

]
= DB

P

[ −→a P
−̇→ω

]
(9)

Thus the transport of the direct dynamic model of a body B from a point G to a point P reads:

DB
P = τTGPD

B
GτGP =

[
mBI3 mB(∗GP )

−mB(∗GP ) JBG −mB(∗GP )2

]
. (10)

1.3. Connection with a rigid appendage

If we consider now that a rigid appendage A is cantilevered to the base B at point P, the reaction force
−→
F B/A and torque

−→
T B/A,P at point P between the base and the appendage must be taken into account in the dynamic model of the base.
Thus equation (9) becomes:  −→

F
ext
−
−→
F B/A

−→
T ext,P −

−→
T B/A,P

 = DB
P

[ −→a P
−̇→ω

]
. (11)



The appendage A is characterized by its own dynamic model DA
P at point P 1. If we assume that the only force and torque

applied on the appendage A are the reaction force and torque with the base B, then one can write: −→
F B/A

−→
T B/A,P

 = DA
P

[ −→a P
−̇→ω

]
(12)

Substituting (12) in (11) we get the equation of motion of the whole system at point P :

 −→
F ext

−→
T ext,P

 = (DA
P +DB

P )

[ −→a P
−̇→ω

]

= (DA
P + τT

GP
DB
GτGP

)

[ −→a P
−̇→ω

]
(13)

It could be more interesting to express the whole dynamic model at the center of mass G of the base B, since the external
forces and torques will correspond to the AOCS (reaction wheel and thrust) which are mounted on the base. Then, one
can directly write:

 −→
F

ext

−→
T

ext,G

 = (τT
P G
DA
P τP G

+DB
G)

[ −→a G
−̇→ω

]

= (DA
G +DB

G)

[ −→a G
−̇→ω

]
(14)

This equation introduces the dynamic model of the appendage at the point G: (DA
G). We can also compute the inverse

dynamic model (which will be used for designing the AOCS):

[ −→a G
−̇→ω

]
= (DB

G +DA
G)−1

 −→
F ext

−→
T

ext,G


= (DSatellite

G )−1

 −→
F ext

−→
T

ext,G

 (15)

It can be shown that:

(DB
G +DA

G)−1 = DB−1

G

(
I6 + τT

P G
DA
P τP G

DB−1

G

)−1

(16)

Equation (15) can be expressed with the block diagram presented in Figure 3 which highlights that the dynamic model
of appendage acts as a feedback between acceleration and forces at point G on the base B. Such a block diagram
representation will be very useful to introduce uncertainties in the various geometric or dynamic parameters.

1If
−→
PC is the vector between P and the center of mass C of the appendage in the frame RP , we can also write:

DA
P = τT

CP

[
mAI3 0

0 JA
C

]
τCP
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Figure 3. Block Diagram of the inverse Dynamic Model

1.4. Rigid connection with a rotation transformation

In the general case, a rotation matrix R3×3 between the frame RAP = (P, xP , yP , zP ) (in which the dynamic model DA
P

will be described) and the frame RP = (P, x, y, z) (parallel to RG at point P ) must be taken into account. That is
illustrated in Figure 4 in the special case where the appendage is rotated with an angle θ around z − axis, that is 2:

R3×3 =

 cos(θ) −sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

 . (17)

Figure 4. Rigid connection between the hub and a rotated solar array (in this figure, θ is negative).

To write the equation of motion of the whole system at point G (equation (15)), that is to compute DA
G, we have to take

into account the rotation on the dynamic model DA
P before to transport this dynamic model from P to G:

DA
G = τT

P G

[
R3×3 0

0 R3×3

]
︸ ︷︷ ︸

R6×6

DA
P

[
R3×3 0

0 R3×3

]T
τ

P G
(18)

2R is the coordinate matrix of RA
P axis in RP ; that is, for any vector −→v : −→v |RP

= R−→v |RA
P

.



2. CONNECTION OF A FLEXIBLE APPENDAGE

Flexibility of an appendage will be represented by the effective mass approach ([2]). This representation is very useful
when one want to study dynamic couplings between the flexible modes of the appendage and the rigid modes of the whole
system without analysis of internal deformations (or loads) of the appendage. The so called "‘Cantilever Hybrid Model"’
(see [3]) will be used: at point P , the static dynamic model of the appendage A (equation (12)) is now removed by the
following differential equations:

 −→
F B/A

−→
T B/A,P

 = DA
P

[ −→a P
−̇→ω

]
+ LTP η̈ (19)

η̈ + diag(2ξiwi)η̇ + diag(w2
i )η = −LP

[ −→a P
−̇→ω

]
(20)

where LP = [l1P
T

l2P
T · · · lkP

T ]T .

liP (1×6), wi, ξi are the modal contribution 3 at point P , the frequency, and the damping ratio of the flexible mode i
respectively, for i = 1, ..., k (k is the number of flexible modes taken into account). η is the vector of flexible modal
coordinates.

The direct dynamic model of the appendage can also be described by the state-space representation:[
η̇

η̈

]
=

[
0k×k Ik

−Kk×k −Dk×k

][
η

η̇

]
+

[
0k×6

−LPk×6

][ −→a P

−̇→ω

]

 −→
F B/A

−→
T B/A,P

 =
[
−LT

PK −LT
PD

] [ η

η̇

]
+ (DA

P − LT
PLP )

[ −→a P

−̇→ω

]
(21)

where D = diag(2ξiwi) and K = diag(w2
i ).

This state-space representation allows the direct transfer matrix MA
P (s) between force and acceleration of the appendage

at point P (also called dynamic mass matrix) to be computed:

 −→
F B/A

−→
T B/A,P

 = MA
P (s)

[ −→a P
−̇→ω

]
(22)

with :

MA
P (s) = DA

P − LTPLP +[
−LTPK −LTPD

]
6×k

[
sIk −Ik
K (sIk +D)

]−1 [
0k×6

−LPk×6

]
.

In the case where flexible mode damping ratios are neglected (D = 0), this transfer matrix can be re-arranged in the
following way:

MA
P (s) = DA

P0
+

k∑
i=1

DA
Pi

w2
i

s2 + w2
i

where:
3if modal contribution matrix is given at point C (the appendage center of mass) and denoted LC , then one can write: LP = LCτCP .



• DA
P0

is the residual mass matrix rigidly cantilevered to the base B at point P and is given by:

DA
P0

= DA
P − LTPLP = DA

P −
∑k
i=1 l

i
P
T
liP ,

• DA
Pi

= liP
T
liP is rank-1 effective-mass matrix of the ith mode,

• DA
P is the static gain (DC gain) of MA

P (s).

To build the dynamic model of the whole system (rigid base + flexible appendage), we only have to removeDA
P byMA

P (s)
(defined by state space representation (21)) in equations (13) to (16) and (18) and in the block diagram depicted in Figure
3.

3. CONNECTION WITH ON-BOARD ANGULAR MOMENTUM

In this section the appendage A is an on-board angular momentum, that is a spinning wheel. Such an on-board angular
momentum can be provided by a flywheel or a CMG (Control Moment Gyro). Only the spinning wheel is considered;
note that for a CMG, the gimbal joint can also be taken into account using results of section 4.

z

o

BBase:

Appendage (wheel):A

P

θ

Ω
z

y

G

x

P

x
x

y

y
P

P

z

Figure 5. Connection between the hub (base B) and an onboard angular momentum.

The following assumptions will be made:

• without loss of generality, the connecting point P between the base B and the appendage A (the wheel) coincides
with the center of mass C of the wheel,

• the spinning axis is along the z-axis 4 (see figure 5) and the spin rate is constant θ̇ = Ω0,

• the wheel is symmetric w.r.t. (P,−→z ) axis and is statically and dynamically balanced.

Under these assumptions the dynamic model of the wheel is constant in both frames RP = (P, x, y, z) (attached to the
base B) and RAP = (P, xP , yP , zP ) (attached to the wheel A) and reads:

DA
P =

[
mAI3 0

0 JAP

]
4It is always possible to meet this assumption using a rotation transformation R3×3 (see section 1.4)



where mA is the mass of the wheel and JAP =

[
I 0 0
0 I 0
0 0 Iw

]
is the wheel inertia matrix in frame RP or RAP .

The total angular momentum of the wheel w.r.t. point P reads:

LAP = JAP
−→ω + Iw θ̇

−→z

and the fundamental principle of dynamics (using derivation in the frame RP ) provides:

−→
T B/A,P = JAP

−̇→ω + Iw θ̈
−→z +−→ω × JAP −→ω +−→ω × Iw θ̇−→z ,

where −̇→ω = d−→ω
dt |RP

= d−→ω
dt |Ri , since −→ω has the same coordinates in RP and Ri (but not in RAP !!).

The linearization of this equation lies on the following considerations:

• as in the previous case, the term −→ω × JAP
−→ω can be neglected if the angular velocity −→ω of the base B w.r.t inertial

frame is small enough,

• Iw θ̈−→z =
−→
0 as the spin rate is assumed to be constant (θ̇ = Ω0). Then, the third component TB/A,P z of the torque

TB/A,P applied by the base B to the wheel A along the wheel pivot joint can represent the torque Cm applied by
the wheel motor to maintain a constant spin rate Ω0 (see section 4),

• the last term −→ω × Iw θ̇−→z cannot be neglected since the spin rate θ̇ = Ω0 is important.

In the frame RP , if [ωx, ωy, ωz]TRP
is the coordinate vector of −→ω , it can be easily shown that:

−→ω × Iw θ̇−→z =

[
IwΩ0ωy
−IwΩ0ωx

0

]
RP

=

[ 0 IwΩ0 0
−IwΩ0 0 0

0 0 0

][
ωx
ωy
ωz

]
RP

.

Using intrinsic notations (already introduced in equation (3)), one can also write:

−→ω × Iw θ̇−→z = −IwΩ0 (∗z)−→ω

where (∗z) is the antisymmetric matrix 5 associated with the spin axis −→z . The 3 × 3 matrix −IwΩ0 (∗z) represents the
gyroscopic gain of the wheel.

Thus, the direct angular linear model reads (using LAPLACE variable s):

−→
T B/A,P = JAP

−̇→ω − IwΩ0 (∗z)−→ω =
(
JAP −

1
s
IwΩ0 (∗z)

)−̇→ω , (23)

or considering the 6 d.o.f., the direct linear model reads: −→
F B/A

−→
T B/A,P

 =
(
DA
P +

[
03×3 03×3

03×3 − 1
sIwΩ0 (∗z)

])
︸ ︷︷ ︸

MA
P (s)

[ −→a P
−̇→ω

]
. (24)

To build the dynamic model of the whole system (rigid base + on-board angular momentum), we only have to removeDA
P

by MA
P (s) (defined by equation 24) in equations (13) to (16) and (18) and in the block diagram depicted in Figure 3.

Remark: If there are several on-board angular momentums connected to the hub (or the base B), then the angular rate −→ω
of the base (in the second member of equation (23)) is the same for each appendage (or wheel). Therefore, once the direct
dynamic model of the whole system is assembled, it is possible to compute a minimal realization of this model in order

5In the frame RP : (∗z) =

 0 −1 0
1 0 0
0 0 0


RP

. In any frame (z) is a rank 2 matrix; thus MA
P (s) in equation (24) is a second order system.



to remove extra integrators introduced on the angular acceleration −̇→ω for each appendage in equation (24). An other way
to proceed is to compute the inverse dynamic model using block-diagram depicted in Figure 6 where the 6 × 6 gain GAP
is defined by equation (25). But the dynamic mass matrix MA

P (s) of the appendage in equation (24) is quite useful to use
results of section 4 when one wants to take into account pivot joints in appendages (CMGs for instance).

GAP =
[

03×3 03×3

03×3 −IwΩ0 (∗z)

]
. (25)

PG
T τ

PG

D A
P

D
B
G[ ]

−1 1
s

−

+
1
s

ω
.

a
P

ext
F

Text,G

B/A
F

T
B/A,P

G
a

ω
.

+

+ A
PG

τ

Figure 6. Block Diagram of the inverse Dynamic Model with a spinning wheel appendage.

4. PIVOT JOINT BETWEEN BASE AND APPENDAGE

In the case where the base B and the appendage A are linked by a pivot joint (around the zP axis 6), the reaction torque
about the zP axis is null. Then (22) projected in the frame (P, xP , yP , zP ) becomes:



FB/Ax

FB/Ay

FB/Az

TB/A,Px

TB/A,Py

0


= MA

P (s)



aPx

aPy

aPz

ω̇x

ω̇y

ω̇z + θ̈


(26)

where θ̈ is the relative angular acceleration, along the pivot zP -axis, of the appendage A w.r.t the base B.

If the pivot joint is motorized with a motor applying a torque Cm around zP axis (i.e. a torque applied by the base B on
the appendage A), the dynamic model of the appendage at point P becomes:

6It is assumed here that the pivot joint is along zP axis in the frame RA
P attached to the appendage. It is always possible to meet this assumption

using a rotation transformation R3×3 (see section 1.4).





FB/Ax

FB/Ay

FB/Az

TB/A,Px

TB/A,Py

Cm


= MA

P (s)



aPx

aPy

aPz

ω̇x

ω̇y

ω̇z + θ̈


(27)

Therefore, a new input Cm and a new output θ̈ are introduced to the whole inverse dynamic model which is depicted in
Figure 7 and replaces the model described by equation (15).

Figure 7. A schematic illustration of the inputs and outputs when pivot joints are added.

Remark: If is the appendage is an onboard angular momentum, then MA
P (s) (defined by equation (24)) depends on the

spin rate which is assumed to be constant and equal to Ω0. Thus, the result of this section are still valid only is the spin
rate variation θ̇ − Ω0 =

∫
θ̈dt are small enough w.r.t. the nominal spin rate Ω0. This is the case for instance if Cm is

computed to regulate the θ̇ around Ω0 though a feedback gain K: Cm = K(Ω0 − θ̇). Otherwise, a new linearisation
around the new spin rate must be performed.

From (27), the equation for the last row reads7:

Cm = MA
P (s)(6, 1 : 5)



aPx

aPy

aPz

ω̇x

ω̇y


+MA

P (s)(6, 6) (ω̇z + θ̈) (28)

thus the pivot angular acceleration θ̈ is equal to:

θ̈ =
1

MA
P (s) (6, 6)


Cm −MA

P (s) (6, 1 : 5)



aPx

aPy

aPz

ω̇x

ω̇y




− ω̇z . (29)

The inverse dynamic model [DSatellite
G ]−1 can be described by the functional diagram depicted in Figure 8.

5. GENERALISATION AND VALIDATION

The purpose of this section is to validate the inverse dynamic model ([DSatellite
G ]−1 see Figure 7) tacking into account

some pivot joints between the base and some appendages by comparison with the direct dynamic model assuming that all
appendages are cantilevered on the base DSatellite

G,cantilever.

7MATLAB syntax is used to defined by F (s)(i : j, k : l) the subsystem between outputs i to j and inputs k to l in the system F (s).
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Figure 8. Block Diagram of the Inverse Dynamic Model with pivot joint

If we consider the direct model of the rigid base DB
G and n flexible appendages Ai (defined by dynamic mass matrix

MAi

Pi
(s), i = 1, · · · , n) cantilevered to the base at point Pi through a rotation matrix Ri6×6, then using previous results

of sections 1 and 2, one can compute the 6× 6 direct dynamic model of the whole system:

DSatellite
G,cantilever = DB

G +
n∑
i=1

τTPiGRi6×6M
Ai

Pi
(s)RiT6×6τPiG .

If we assume now that these n appendages are not cantilevered but are connected with pivot joints, then the result of
section 4 allows to build the whole inverse dynamic model [DSatellite

G ]−1 (see Figure 7).

This model can be detailed in the following way:
−→a G
−̇→ω

θ̈
n×1

 =

[
T116×6 T126×n

T21n×6 T22n×n

]
−→
F

ext

−→
T

ext,G

Cmn×1

 (30)

T11 is the transfer function between

[ −→a G
−̇→ω

]
and

 −→
F ext

−→
T

ext,G

.

T12 is the transfer function between

[ −→a G
−̇→ω

]
and Cmn×1 .

T21 is the transfer function between θ̈
n×1 and

 −→
F

ext

−→
T

ext,G

.

T22 is the transfer function between θ̈
n×1 and Cmn×1 .



From model [DSatellite
G ]−1, one can lock pivot joints by nulling the pivot acceleration:

θ̈n×1 = 0n×1, (31)

and then emulate cantilevered joints: indeed from equation (30) and (31) and eliminating Cm, one can derive:

[ −→a G
−̇→ω

]
6×1

=
[
T11 − T12T

−1
22 T21

]  −→
F

ext

−→
T

ext,G


6×1

. (32)

Then one can verify that the direct dynamic model DSatellite
G,cantilever is recovered:

DSatellite
G,cantilever =

[
T116×6 − T126×n

T−1
22n×n

T21n×6

]−1

.

An other way to lock pivot joints is to feedback the pivot positions to pivot torques through a very significant stiffness
according to Figure 9. Then the new inverse dynamics model exhibits a high frequency flexible modes which can be
reduced to provide the inverse cantilevered dynamic model.

Figure 9. Pivot joints are locked using a feedback though an infinite stiffness k.

6. CONCLUSION AND PERSPECTIVES

In this paper, the linear dynamic model of a spacecraft composed of a rigid base and various flexible and rigid appendages
connected to the base by a cantilever joint or a pivot joint has been developed. The build of this model lies on basic
operations:

• transportation of a dynamic model to one point to an other,

• connection of 2 dynamic models,

• use of effective masses to handle dynamic mass matrix for a flexible appendage,

• use again dynamic mass matrix to take into account on-board angular momentum,

• subdivision of the dynamic mass matrix to take into account a pivot joint.

All these operations can be simply represented by a block diagram and can be performed recursively to model any kind
of open mechanical chain. The reader will find in http://personnel.supaero.fr/alazard-daniel
/demos/SDT a Matlab package called Spacecraft Dynamics Toolbox to develop such models and some illustrative
examples (including flexible appendage or on-board angular momentum and CMGs).

The short-term perspectives of this work are the following:



• to take into account a metrological model between the accelerations at the reference point and what is measured by
the sensors (linear and angular accelerometers),

• to interface our toolbox with the Linear Fractional Representation (LFR) toolbox to handle uncertain dynamic
parameters in the modeling process ([4]),

• to take into account unbalances in on-board angular momentums in order to study micro-vibrations.
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