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Abstract

We present here a method and some tools developed to build linear models of multi-body systems for
space applications (typically satellites). The multi-body system is composed of a main body (hub) fitted
with rigid and flexible appendages (solar panels, antennas, propellant tanks, ...etc) and on-board angular
momentums (flywheels, control moment gyros). Each appendage can be connected to the hub by a cantilever
joint or a pivot joint. More generally, our method can be applied to any open mechanical chain. In our
approach, the rigid six degrees of freedom (d.o.f) (three translational and three rotational) are treated all
together. That is very convenient to build linear models of complex multi-body systems. Then, the dynamics
model used to design AOCS, i.e. the model between forces and torques (applied on the hub) and angular and
linear position and velocity of the hub, can be derived very easily. This model can be interpreted using block
diagram representation.
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INTRODUCTION

Spacecraft are very complex mechanical multi-body systems including flexible and/or rotating appendages. The design of
the AOCS requires a linear model taking into account all the rigid and flexible couplings between the hub (where the AOCS
acts) and the various appendages. Note that the linear assumption is quite realistic for such systems since perturbations
and so motions are very small (except for very dexterous observation satellites). This linear assumption is furthermore
valid in the field of future missions for deep space exploration involving formation flying of several spacecraft. For this
kind of formation flying mission, it is more and more accepted that the 3 rotation d.o.f. and the 3 translation d.o.f. must
be treated all together ([1]).

Therefore, a 6 d.o.f. model including couplings between rotations and translations must be developed. Lots of multi-body
software are available to build such kind of models but they address the nonlinear behavior and they are too much loud to
be handled at the early prototyping phase. So a tool is required to develop quickly the dynamic model and to prototype
the AOCS or to analyze and to optimize the main dynamic parameters of the mechanical structure or AOCS and finally to
assess the global performance of the system.

Here we propose some tools developed with MATLAB/SIMULINK to built efficiently the linear dynamic model of any
open mechanical chain. More precisely, the linear multi-body model considered here is depicted on Figure 1. This model,
called inverse dynamic model, gives the relationship between the inputs, which are composed of:

— —
o the six external forces F', , and torques T’
tem(AOCS) at a reference point O,

applied on the hub (base) by the Attitude and Orbit Control Sys-

ext,O

e the n drive torques C., (i) applied at the pivot joint ¢ (i = 1,--- ,n, n is the number of pivot joints) between an
appendage and the hub,
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and the output, which is composed of:

e the six linear and angular accelerations of the hub at point O (resp. @ o and _c;f),

o the angular acceleration 6(i) of the pivot point i (fori = 1,--- , n).
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Figure 1. General inverse dynamic model

This paper introduces gradually each complexity of the modeling problem. The first section concerns the simplest case
of two interconnected rigid bodies. Let us recall that the approach assumes that the hub (or central body or base) is rigid.
In the second section flexible appendages are taken into account using effective mass representation. On-board angular
momentum are taken into account in section 3. The way how a motorized pivot joint between an appendage and the hub
can be taken into account is described in section 4. A model validation is proposed in section 5.

1. INTERCONNECTED RIGID BODIES MODEL

Let us consider a spacecraft composed of a rigid main body or hub (called here after the base B) with its center of mass
at point (¢, and a rigid appendage A (with its center of mass C') cantilevered to the base B at point P (see Figure 4). Let
us denote R = (G, x,y, z) the reference frame rigidly attached to the hub at G and Rp = (P, z,y, z) the same frame
translated to point P. In the sequel the dynamic model of the appendage will be obviously given in the frame Rp.
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Figure 2. A simple spacecraft model, two rigid bodies connected at point P

1.1. Dynamic model of the base B at point G

Let us consider the base B alone (without appendage), according to the NEWTON’s and EULER’s equations, the dynamic
model of the base B at its center of mass G reads as follows:

—

F,., DB Kge mBI; 0 da
T [ R 2 O A B 72 I I
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where

e mP is the mass of the body B,

e [, is the n X m identity matrix,

JE is the inertia matrix (in kg.m?) at point G of the body B in the frame R,

W is the absolute angular velocity vector of the body B (i.e. the angular velocity of the frame R¢ or frame Rp
w.r.t the inertial frame R; in (rad/s)).

,» since w has the same coordinates in Rg and R;.

= _ 4o _ dd
and W = 57 |re= G

In (1), the three translational acceleratlons and the three angular accelerations are considered together. Note that for the
rotation dynamics, the relation Temt G = JG w is a linear approximation, the actual non-linear dynamic equation reads:

= dLB
Teatc = =2 |, (2)
where L G W is the angular momentum of the base B at point G. Then, using the time-domain derivation in the

body frame of base B (in which, Jg is constant), it comes:

N .

T vt =JE8W + T x JE@
where X is the cross product.

The nonlinear term (W x JE W) on the right hand side of the equation above can be neglected if angular velocity @ is
small enough (linear assumption).

1.2. Transport of the dynamic model of B from point G to point P

Let us recall that the relation between the velocities at points P and G is :

V)p:‘—/zg—l—P—dXE):‘—/zg—‘r(*PG)U 3)

—
where (*PG) is the antisymmetric matrix associated with the vector PG. That is, if [z, y, 2]} is the coordinate vector

of GP projected in any frame R, then (*GP) reads:

0 —z 0 2z -y
(Gp)=| z 0 -= 1 ., ("PG)=| -z 0 =z ]
-y 0 1g y —z 0 ],

Note that equation (3) allows a vector product to be transformed into a matrix-vector product and can be projected in any
frame.

Then, the six d.o.f. kinematic vectors v and vp of the body B respectively at points G' and P are given by :

‘—/)G — Iy ("GP) ‘—/)P 4)
o 0 I3 o
—_— ———

T p is called the (6 x 6) kinematic model between the points G and P.

Now, let us consider the inertial accelerations at points P and G :

—
— dVP
a

—
— = - Wa
P

- and = )
|, =" R,



It is well-known that :
_
a

dt

—
dGP e 0
da ) e

and, as explained before, all nonlinear terms can be neglected. The acceleration at point P is then deduced from the
acceleration at point G by the linear relation :

—
: dGP
p=Tc+ WU xGP+ T x <<G> ™ mxa—fv)

For a rigid body,

Tp=7dc+ ("PG)W (5)
From equation (5) one can derive the following kinematic relationship :
da p I; (*GP)
. =T . =
o R st 0 I3

To obtain the relationship between the 6 d.o.f external force vectors at point GG and at point P, it is interesting to express
the external force power computed along a virtual velocity field :

—
a

»
] . (6)

N
w

‘_/G ’ ?emt ‘_/)P ’ ?czt
Pemt = — —_ = — — (7)
w cat, G w T ext,P
Combining (4) and (7), one can easily obtain :
— — —
r,_, F_, I3 0 F_,
Text,P Te.'l:t,G _( GP) IB Tc:(:t,G
From (6) and (8), the direct dynamic model Dg of the base B at point P becomes:
1_7:“ s | mPIs 0 ap DB p ©)
=T T, . = .
T..| “Lo JE]71w e
Thus the transport of the direct dynamic model of a body B from a point G to a point P reads:
B B (*
m>© I3 m®” (*GP
DE =12 DErqp = ( ) (10)
—-mB(*GP) JE —mP(*GP)?

1.3. Connection with a rigid appendage

N
If we consider now that a rigid appendage A is cantilevered to the base B at point P, the reaction force F' /4 and torque

T B/A,p at point PP between the base and the appendage must be taken into account in the dynamic model of the base.
Thus equation (9) becomes:

— — —

me, — FB/A B a p
= R =DE| . |- (11
Tea;t,P_ TB/A,P w



The appendage A is characterized by its own dynamic model D4 at point P'. If we assume that the only force and torque
applied on the appendage A are the reaction force and torque with the base B, then one can write:

- —

Fpa A ar

R =Dp| _, (12)
Tpap W
Substituting (12) in (11) we get the equation of motion of the whole system at point P:

— —

Fe:x‘t a P
T ext,P w

ap
= (Dp+75 DEr..) [ = ] (13)

can directly write:

It could be more interesting to express the whole dynamic model at the center of mass G of the base B, since the external
forces and torques will correspond to the AOCS (reaction wheel and thrust) which are mounted on the base. Then, one

Vol @
ext G
— (TZGDIIgTPG_FDg) AN
Te:ut,G w
—
A B t¢a
(Dé+Dg)|
w

(14)

This equation introduces the dynamic model of the appendage at the point G: (Dé). We can also compute the inverse
dynamic model (which will be used for designing the AOCS):

@ F
¢ — ext
[4] = (DE+DH~'| _
v Tezt.G
F
— (Déatellite)fl _ ext (15)
Tezt,G

It can be shown that:

1 1\ 1
(Dg +Dé)71 = Dg (Iﬁ +TZGDII§TPGD§ 1)

(16)
Equation (15) can be expressed with the block diagram presented in Figure 3 which highlights that the dynamic model
of appendage acts as a feedback between acceleration and forces at point G on the base B. Such a block diagram
representation will be very useful to introduce uncertainties in the various geometric or dynamic parameters.

—
UIf PC is the vector between P and the center of mass C' of the appendage in the frame Rp, we can also write:

A T mAIs 0
Dp =715p 4 | TP
0 J&
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Figure 3. Block Diagram of the inverse Dynamic Model

1.4. Rigid connection with a rotation transformation

In the general case, a rotation matrix R33 between the frame R4 = (P,xp,yp,zp) (in which the dynamic model Dﬁ
will be described) and the frame Rp = (P, z,y,z) (parallel to R at point P) must be taken into account. That is
illustrated in Figure 4 in the special case where the appendage is rotated with an angle § around z — axis, that is 2:

cos(f) —sin(6) 0
R3xz = | sin(f) cos(d) 0 | . (17
0 0 1

Satellite Base B Appendage A

Figure 4. Rigid connection between the hub and a rotated solar array (in this figure, 0 is negative).

To write the equation of motion of the whole system at point G' (equation (15)), that is to compute Dg, we have to take
into account the rotation on the dynamic model D}“,1 before to transport this dynamic model from P to G:

T
R3x3 0

0  Rsxs

R3yx3 0
0  Rsxs

A

P U (18)

PG

Rexe

2R is the coordinate matrix of R‘;‘, axis in Rp; that is, for any vector v Rp = R ?| RA-
P



2. CONNECTION OF A FLEXIBLE APPENDAGE

Flexibility of an appendage will be represented by the effective mass approach ([2]). This representation is very useful
when one want to study dynamic couplings between the flexible modes of the appendage and the rigid modes of the whole
system without analysis of internal deformations (or loads) of the appendage. The so called "‘Cantilever Hybrid Model"’
(see [3]) will be used: at point P, the static dynamic model of the appendage A (equation (12)) is now removed by the
following differential equations:

Fpa @

P
. =D3 l |+ LB (19)
Tpgyap w
_
ap
i + diag(2&;w;)n + diag(w?)n = —Lp l - ] (20)
W

where Lp = [Z}JT Z%T l’ng]T.

l};uxﬁ), w;, & are the modal contribution 3 at point P, the frequency, and the damping ratio of the flexible mode i

respectively, for ¢ = 1,...,k (k is the number of flexible modes taken into account). 7 is the vector of flexible modal
coordinates.

The direct dynamic model of the appendage can also be described by the state-space representation:

Bl ol G Y
= + .
il —Kikxr —Dgxk 7 —Lpy W

Fra Tr
_ ) 2n
TB/a,p

n
+(Dp —LpLe) |
w

]:[—LITDK —LITDD}L.7

where D = diag(2¢;w;) and K = diag(w?).

This state-space representation allows the direct transfer matrix )M ﬁ (s) between force and acceleration of the appendage
at point P (also called dynamic mass matrix) to be computed:

_
Fpa

gl sl

= Mp(s) [ (22)

N
Tpyap

with :

M#(s)=Da—LELp +

-1
[ _ITK —ITD ] sl —1I Okx6
P P 6xk K (SIk +D) _LPk:xb' .

In the case where flexible mode damping ratios are neglected (D = 0), this transfer matrix can be re-arranged in the

following way:
k 2
wj
Mp(s) = Dp + > Dp, o
i=1 i

where:

3if modal contribution matrix is given at point C' (the appendage center of mass) and denoted L, then one can write: Lp = LoTop.



° Df}o is the residual mass matrix rigidly cantilevered to the base B at point P and is given by:
Df, = Dp — L5Lp = DA =Y, 171,
o D = 15,71, is rank-1 effective-mass matrix of the ith mode,
e D4 is the static gain (DC gain) of M7 (s).
To build the dynamic model of the whole system (rigid base + flexible appendage), we only have to remove Dé by M f,‘(s)

(defined by state space representation (21)) in equations (13) to (16) and (18) and in the block diagram depicted in Figure
3.

3. CONNECTION WITH ON-BOARD ANGULAR MOMENTUM

In this section the appendage A is an on-board angular momentum, that is a spinning wheel. Such an on-board angular
momentum can be provided by a flywheel or a CMG (Control Moment Gyro). Only the spinning wheel is considered;
note that for a CMG, the gimbal joint can also be taken into account using results of section 4.

L X
\ Xp i
bX Se
. %
G Q,
Appendage (wheel)A

Base: B

Figure 5. Connection between the hub (base B) and an onboard angular momentum.

The following assumptions will be made:
e without loss of generality, the connecting point P between the base B and the appendage A (the wheel) coincides
with the center of mass C' of the wheel,
e the spinning axis is along the z-axis # (see figure 5) and the spin rate is constant 0 = Q,
e the wheel is symmetric w.r.t. (P, Z’) axis and is statically and dynamically balanced.

Under these assumptions the dynamic model of the wheel is constant in both frames Rp = (P, z,y, z) (attached to the
base B) and R4 = (P, zp, yp, zp) (attached to the wheel A) and reads:

A
A_ m*ls 0
Dp A
0 Jp

Tt is always possible to meet this assumption using a rotation transformation R3x 3 (see section 1.4)
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where m is the mass of the wheel and J5 = [ 1 is the wheel inertia matrix in frame Rp or Rp.

I,
The total angular momentum of the wheel w.r.t. point P reads:
Ly =Jp0 + 1,07
and the fundamental principle of dynamics (using derivation in the frame R p) provides:
Tpap=Jio+ 1,07+ T xJAT+ T x 1,07,

= _ dW _ do
where W' = = |p,= G-

7 IR, since w has the same coordinates in Rp and R; (but not in Ré M.

The linearization of this equation lies on the following considerations:

e as in the previous case, the term @ x .J jéU can be neglected if the angular velocity @ of the base B w.r.t inertial

frame is small enough,

o [, 67 =0 asthe spin rate is assumed to be constant (6 = Q). Then, the third component Tz, 4, p _ of the torque
T/, p applied by the base B to the wheel A along the wheel pivot joint can represent the torque é‘m applied by

the wheel motor to maintain a constant spin rate {2 (see section 4),

o the last term & x I,, 0 Z cannot be neglected since the spin rate 0 =Qqis important.

In the frame Rp, if [w,, wy, wz]EP is the coordinate vector of @, it can be easily shown that:

0 IwQ() 0 We
:[_mo 0 OH%] .
. 0 0 0] Llw J,

Using intrinsic notations (already introduced in equation (3)), one can also write:

. IwQOwy
TxI,07 = l Ly Qows
0

O X107 =—I,0 (*2) &

where (*z) is the antisymmetric matrix > associated with the spin axis Z'. The 3 x 3 matrix —1,,€ (*2) represents the

gyroscopic gain of the wheel.

Thus, the direct angular linear model reads (using LAPLACE variable s):
- A— *_\ = A 1 * -
Tpjap=Jpw — L, ("2) J = (JP - ngQo( z)) W,

or considering the 6 d.o.f., the direct linear model reads:

—
a

N

Fp/a ( 0 0 P
—(pa+ { sxs Osxs ]) . '

?BM’P O3x3  —5 w0 (*2) =

Mg (s)

(23)

(24)

To build the dynamic model of the whole system (rigid base + on-board angular momentum), we only have to remove D5

by M jé (s) (defined by equation 24) in equations (13) to (16) and (18) and in the block diagram depicted in Figure 3.

Remark: If there are several on-board angular momentums connected to the hub (or the base B), then the angular rate &
of the base (in the second member of equation (23)) is the same for each appendage (or wheel). Therefore, once the direct
dynamic model of the whole system is assembled, it is possible to compute a minimal realization of this model in order

-1

0 0
3In the frame Rp: (*z) = [ 1 0 O :| . In any frame (?) is a rank 2 matrix; thus M7 (s) in equation (24) is a second order system.
0 0
Rp

0



to remove extra integrators introduced on the angular acceleration @ for each appendage in equation (24). An other way
to proceed is to compute the inverse dynamic model using block-diagram depicted in Figure 6 where the 6 x 6 gain G’If-‘,
is defined by equation (25). But the dynamic mass matrix M }é‘(s) of the appendage in equation (24) is quite useful to use
results of section 4 when one wants to take into account pivot joints in appendages (CMGs for instance).

A _ | O3xs O3x3
Gp = O3x3 —LwQo (*2) | - (25)

F + A r
o 0r A [
T -
BIAP w

! 1

PG PG

T R RE

? + ? S S
ext G
. N
W
Text,G

Figure 6. Block Diagram of the inverse Dynamic Model with a spinning wheel appendage.

4. PIVOT JOINT BETWEEN BASE AND APPENDAGE

In the case where the base B and the appendage A are linked by a pivot joint (around the zp axis °), the reaction torque
about the zp axis is null. Then (22) projected in the frame (P, zp, yp, zp) becomes:

[ Fja, ]| [ ap, ]
Fpya, ap,
T e | 6)
Tp/a,P, Wz
Tg/a.p, Wy
o0 ] .+ 6]

where 6 is the relative angular acceleration, along the pivot zp-axis, of the appendage A w.r.t the base B.

If the pivot joint is motorized with a motor applying a torque C,,, around zp axis (i.e. a torque applied by the base B on
the appendage A), the dynamic model of the appendage at point P becomes:

6Tt is assumed here that the pivot joint is along zp axis in the frame R?, attached to the appendage. It is always possible to meet this assumption
using a rotation transformation R3x3 (see section 1.4).



Fpra, [ ap, ]
Fpa, ap,
Fpja. _ MAs) a'Pz @7
Tp/a,P, We
Tga,p, wy
Cp | | O, +6 |

Therefore, a new input C,,, and a new output 6 are introduced to the whole inverse dynamic model which is depicted in
Figure 7 and replaces the model described by equation (15).

Fer =P
4 e 11— 1%
[TW,G] [ D g'atelllte ] =2

C— L s

Figure 7. A schematic illustration of the inputs and outputs when pivot joints are added.

Remark: If is the appendage is an onboard angular momentum, then A/ j.f‘(s) (defined by equation (24)) depends on the
spin rate which is assumed to be constant and equal to €2y. Thus, the result of this section are still valid only is the spin

rate variation  — Qy = i 0dt are small enough w.r.t. the nominal spin rate {y. This is the case for instance if C, is

computed to regulate the 0 around € though a feedback gain K: C,, = K(Qy — 0) Otherwise, a new linearisation
around the new spin rate must be performed.

From (27), the equation for the last row reads’:

ap,
ap,
Con = MA(5)(6,1:5) | ap, | + M#(s)(6,6) (w. + 6) (28)
We
[ wy |
thus the pivot angular acceleration 0 is equal to:
- Cap, 1]
ap,
6 = W Cpn — M{(s) (6,1:5) a.pz — . (29)
Wy
L L wy ]

The inverse dynamic model [D(S;‘”e””e] ~1 can be described by the functional diagram depicted in Figure 8.

5. GENERALISATION AND VALIDATION

The purpose of this section is to validate the inverse dynamic model ([Dg‘”e”“e]_1 see Figure 7) tacking into account

some pivot joints between the base and some appendages by comparison with the direct dynamic model assuming that all

appendages are cantilevered on the base D2etellite '

"MATLAB syntax is used to defined by F'(s)(i : j, k : 1) the subsystem between outputs 4 to 5 and inputs k to [ in the system F'(s).
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Figure 8. Block Diagram of the Inverse Dynamic Model with pivot joint

If we consider the direct model of the rigid base D and n flexible appendages A; (defined by dynamic mass matrix

M 1’;‘;‘ (s), i =1,---,n) cantilevered to the base at point P; through a rotation matrix R;sy¢, then using previous results
of sections 1 and 2, one can compute the 6 x 6 direct dynamic model of the whole system:

n
Satellite _ B E T A; T
D = DG + TPLGR16X6MP,L (S)RL6><6TPLG .

G,cantilever
i=1

If we assume now that these n appendages are not cantilevered but are connected with pivot joints, then the result of
section 4 allows to build the whole inverse dynamic model [Dgate”“e} ~1 (see Figure 7).

This model can be detailed in the following way:

A -
a G Femt
= | Tiigns  Ti2exn _ 30)
T T Te:rt,G
21nx6 225 xn

S
Q

nx1 J Mnx1

- —
. . a G F ext
T, is the transfer function between = and | _,
L w - T ext,G
- -
ag
T4 is the transfer function between - and C,, .,
L w -
—
. . o F ext
T3y is the transfer function between 6, , and | _,
T
ext,G

Thg is the transfer function between f | and Crp -

nx1



From model [D2¢!!t¢] =1 one can lock pivot joints by nulling the pivot acceleration:

anlzonxlz (31)

and then emulate cantilevered joints: indeed from equation (30) and (31) and eliminating C,,,, one can derive:

(32)

Satellite

Creantilever 18 TECOVEred:

Then one can verify that the direct dynamic model D

—1
Satellite _ —1
DG,cantilever - [Tllexa - T126><nT22,,LXnT21n><6:| .

An other way to lock pivot joints is to feedback the pivot positions to pivot torques through a very significant stiffness
according to Figure 9. Then the new inverse dynamics model exhibits a high frequency flexible modes which can be
reduced to provide the inverse cantilevered dynamic model.

F? ext 7
l;m,(j [ D é’atellite

C .

in

£

nxn

Figure 9. Pivot joints are locked using a feedback though an infinite stiffness k.

6. CONCLUSION AND PERSPECTIVES

In this paper, the linear dynamic model of a spacecraft composed of a rigid base and various flexible and rigid appendages
connected to the base by a cantilever joint or a pivot joint has been developed. The build of this model lies on basic
operations:

e transportation of a dynamic model to one point to an other,

e connection of 2 dynamic models,

e use of effective masses to handle dynamic mass matrix for a flexible appendage,

e use again dynamic mass matrix to take into account on-board angular momentum,

e subdivision of the dynamic mass matrix to take into account a pivot joint.
All these operations can be simply represented by a block diagram and can be performed recursively to model any kind
of open mechanical chain. The reader will find in http://personnel.supaero.fr/alazard-daniel

/demos/SDT a Matlab package called Spacecraft Dynamics Toolbox to develop such models and some illustrative
examples (including flexible appendage or on-board angular momentum and CMGs).

The short-term perspectives of this work are the following:



e to take into account a metrological model between the accelerations at the reference point and what is measured by
the sensors (linear and angular accelerometers),

e to interface our toolbox with the Linear Fractional Representation (LFR) toolbox to handle uncertain dynamic
parameters in the modeling process ([4]),

e to take into account unbalances in on-board angular momentums in order to study micro-vibrations.
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