
Proceedings of the 39* IEEE 
Conference on Decision and Control 
Sydney, Australia December, 2000 

Gain-Scheduling Through Continuation of Observer-Based 
Realizations - Applications to H,, and ,U Controllers 

Paulo C. Pellanda Pierre Apkarian Daniel Alazard 

ONERA-CERT, Control System Dept., 2 av. Edouard Belin, 31055 Toulouse, FRANCE 
Email: pellanda(apkarian, alazard) Ocert . f r - Fax: +33 5.62.25.25.64 

Abstract 

The dynamic behavior of gain-scheduling controllers 
is highly depending on the state-space representations 
adopted for the family of linear controllers designed on 
a set of operating conditions. In this paper, a tech- 
nique for determining a set of consistent and physi- 
cally motivated linear state-space transformations to be 
applied to the original set of linear controllers is pro- 
posed. After transformation, these controllers exhibit 
an observer-based structure and are therefore easily in- 
terpolated and implemented. This method is applicable 
to discrete- or continuous-time and full- or augmented- 
order compensators, particularly including H ,  and p 
controllers, which do not generally enjoy ease of imple- 
mentation. 

1 Introduction 

Gain-scheduling constitutes a very effective way of con- 
trolling systems whose dynamics changes with oper- 
ating conditions. Most of the recent gain-scheduling 
methods were developed based on a set of plant equilib- 
rium conditions and a corresponding set of linear con- 
trollers [4, 6, 10, 121. In this context, plant equilibrium 
conditions can be parameterized by some scheduling 
variables. Assuming that ‘scheduling variables are mea- 
sured during operation, the gain-scheduled controller is 
a non-stationary and/or nonlinear system obtained by 
simple interpolation or more sophisticated nonlinear re- 
alizations. 

When the nominal plant models can be taken Linear 
Time-Invariant (LTI), modern optimal and robust con- 
trol techniques are available to design linear controllers 
which provide reasonable compromise between perfor- 
mance and robustness around given operating condi- 
tions. In comparison, the available techniques to in- 
terpolate them are relatively immature. Some of the 
most used strategies in classical gain-scheduling ap- 
proach have practical appeal and involve either linear 
interpolation of gains, poles and zeros of transfer func- 
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tions [8] or of state-space matrices or state-feedback 
gains [3, 51. 

In classical gain-scheduling context of this paper, if lin- 
ear controllers change significantly for one operating 
condition to the next, fast rate of variations of the 
closed-loop dynamics are artificially introduced and this 
may result in a destabilizing effect or a loss of perfor- 
mance. Then, to obtain desirable interpolation behav- 
iors, the linear controllers to be scheduled should have 
consistent structures. This becomes critical when state- 
space data are utilized in the interpolation scheme, be- 
cause dynamic behaviors of gain-scheduling controllers 
can be strongly dependent on the adopted realizations. 
See [13, 141 for illuminating demonstrations of this fact. 

In [13, 141, Stilwell and Rugh provide a theoretically 
justified sufficient conditions on the “placement” of LTI 
controllers such that a stability preserving interpolated 
controller always exists. An upper bound on the rate 
of variation of the scheduling variable can also be de- 
termined to assess time-varying stability. Their results 
clearly show that satisfactory transitions depend not 
only on the “distance” between operating points but 
also on the “proximity” between the respective LTI con- 
troller coefficients. This is strengthened by our results. 
Unfortunately, in the state-space interpolation context, 
their methods are restricted to full-order controllers. In 
addition, when the set of operational points is appropri- 
ately chosen, generating the corresponding set of state- 
space realizations that are amenable to interpolation 
is a delicate issue which requires insight and remains 
open in classical gain-scheduling. Yet, in the particular 
case of the observer-based control structure, the gains 
are not the only variables to be scheduled. The set 
of controller coefficients also depend on the state-space 
system data of the plant and must evolve consistently 
with the plant dynamics. That is, significant variations 
or nonlinearities of the plant must be accordingly com- 
pensated by adequate adjustments in the controller. 

In this paper, we propose a method to derive a set of 
state-space linear transformations applied to an origi- 
nal family of linear controllers such that the dynamic 
discrepancies between controllers in the transformed 
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family are minimized and the dynamic behavior of the 
physical plant is respected. Consequently, the nonlin- 
ear gain-scheduled controller has similar dynamics to 
the linear family and this lead to weaker restrictions on 
the scheduling variable rate-bound that guarantees sta- 
bility. Additionally, our methodology generates a set 
of stable Youla parameters having a particular struc- 
ture which tolerates a simple linear interpolation. This 
generalizes for augmented-order controllers the stabil- 
ity preserving interpolation methods proposed in [13] 
and [14]. 

Figure 1: Closed-loop systems 

Consider the closed-loop systems depicted in Figure 1, 
where 

2 Observer-based structures 

Observer-based structures present important features 
which become particularly interesting in the interpola- 
tion step of the gain-scheduling problem for realistic ap- 
plications. Modern controller design techniques as H ,  
and p synthesis and their variants generate high-order 
controllers whose dynamics remain obscure to the de- 
signer and may change significantly with plant operat- 
ing conditions. The interpolation of general state-space 
representations to these controllers is highly question- 
able from an implementation viewpoint and in many 
cases will lead to an insuperable computational ef- 
fort, particularly, for problems necessitating fast real- 
time adjustment of the controller data. In opposite, 
for observer-based controllers, assuming that the linear 
plant model is available in real-time, it is only required 
the storage of two static gains and one Youla parame- 
ter to update the controller dynamics at each sampling 
instant. Furthermore, in practice, scheduling variable 
depends on the plant outputs and/or states being in- 
teresting to estimate efficiently the plant states for all 
scheduling space. Practical techniques to compute esti- 
mator/controller forms to arbitrary compensators have 
been investigated in [l, 21 and references therein. Nev- 
ertheless, these methods treat LTI controllers in a sep- 
arated and disconnected way, leading to a set of state 
transformations which are not always adapted to the 
gain-scheduling context. 

In this section, we recall a technique proposed in [l] 
to compute equivalent state estimator-state feedback 
representations of an arbitrary stabilizing compensator 
associated with a given plant. The techniques in [l] are 
general and encompass discrete- or continuous-time and 
reduced-, full- or augmented-order controllers. They 
are also applicable to proper or non-strictly proper con- 
trollers and plants. However, we are mainly concerned 
with compensators whose orders are greater or equal 
to the plant's order, and particularly H ,  and p con- 
trollers. Reduced-order controllers are not considered 
here. For simplicity of presentation, the non-strictly 
proper plants and discrete-time cases are omitted, but 
they are also encompassed by our method. 

are the nominal and augmented system models, re- 
spectively. The signals w, e ,  z and y are the exoge- 
nous input, the control command, the controlled output 
and the measurement of P(s) ,  respectively. The plants 
G22(s) and P22(s), assumed strictly proper without loss 
of generality, are defined by the following stabilizable 
and detectable realizations: 

where A E RnXn , B E Rnxm , C E RpXn and spec(A,) 2 
spec(A). P22 (5) incorporates some additional ficti- 
tious dynamics (stable weights and/or dynamic scalings 
Wi(s) and Wo(s)).  Gzz(s) corresponds to the physical 
plant's dynamics (eventually including actuators and 
sensors) whose state trajectories should be stabilized 
and estimated by an observer-based controller. 

The problem can be stated as follows. Given the plants 
G22 (s) and &(s) and an original stabilizing controller 
(Figure 1-a) 

(4) 

where Ak E R n k X n b ,  nk 2 n ,  Dk E Rmxp and Bk, ck 
are real with compatible dimensions, find an observer- 
based controller with an explicitly separated structure 
(Figure 1-b) 

Ke(s)  = [-I 1 (5) 

where T is a similarity transformation, such that ( 5 )  is 
input-output equivalent to (4). K,(s) is a lower Linear 



Fractional Transformation with respect to the Youla 
parameter &(s) E RX,. 

We denote 

a minimal realization of Q, where dim(A,) = nq = 
nk - n and B,, C,, D, have compatible dimensions. 
The transfer function J ( s )  between [y; 911 and [U; 2111 

is defined as an observer-based controller for G22 (s) and 
is completely characterized by a state-feedback gain K,  
and an observer gain K f .  Its state 2 is an (asymptotic) ~ 

estimation of the state x of the plant Gzz(s). Then 
the state vector of the closed-loop system incorporates 
the plant states (or physical states), observer states and 
Youla parameter states: [x;  5; z,]. 

n o m  these representations, one can show that the sepa- 
ration principle appears clearly. The closed-loop eigen- 
values can then be separated into n closed-loop state- 
feedback poles, n closed-loop state-estimator poles and 
nq Youla parameter poles: spec(A - BK,),  spec(A - 
K f C )  and spec(A,), respectively. Yet, if we represent 
the closed-loop system in terms of the original controller 
(4) and if we adopt a suitable partition T = [TI Tz] ,  
the closed-loop state vector becomes [ x ;  TI?; T2xq], 

where U1 E RnXn and U? E Rnk x n .  Such sub- 
spaces are easily computed using a Schur factor- 
izations of the matrix A,1. 

a Computing the solution 

(13) 

whose existence is guaranteed whenever all 
closed-loop eigenvalues are distinct. 

Using the later result and similarly, the Sylvester equa- 
tion in Tz E RnkXnq (8) is reduced in computing an 
invariant subspace associated with a set of n, eigen- 
values, spec(A,) ,  chosen among n + n, eigenvalues in 
spec(Ak - TI BCk). 

So, the problem is reduced in solving (7) and (8) in 
T E Rnk x n k ,  and next in computing K,, K f ,  B,, C, 
and D, using (9), (10) and (11). 

We can also establish the following proposition: 

Equipped with these definitions and notations, one can 
derive: 

Proposition 1 [I] The n eigenvalues chosen for the 
computation of the solution TI in (7) using the Hamil- 
tonian approach are the n eigenvalues of the closed-loop 
state feedback associated with the equivalent observer- 

H=A,l c based compensator, i.e., spec(A - BK,) .  Moreover, the 
A f B D k C  BCk remaining closed-loop dynamics (not chosen in the so- 

[ 1 [ B ~ C  ] [ il ] ='O, (7) lution to (7), i.e., dynamics of Ak - TlBCk) contains 
the observation dynamics ( A  - K f C )  increased b y  the 

r % 

Youla parameter dynamics (A , ) .  

(9) 

Therefore, the Hamiltonian matrix H associated with 
the generalized non-symmetric and rectangular Riccati 
equation (7) is nothing else than the dynamic closed- 
loop system matrix A,l. The Riccati equation (7) can 
be solved in TI E Rnk x n  by standard invariant subspace 
techniques consisting in: 

There is a combinatoric of solutions according to the. 
choice of the partition of the closed-loop eigenvalues, 
first in the computation of TI, and-secondly, in the 
computation of Tz. In the full version of this paper [9] 
some additional considerations about the possible solu- 
tions to (7) and (8) are presented and discussed. An 
algorithm (a variant of the method presented in [l]) for 
the computation of input-output equivalent controllers 
which are more amenable to interpolation is also pro- 
posed. 

3 A continuous interpolation method 

In classical gain-scheduling methods, although the 
scheduling variable is a function of time in controller 
implementation, it is viewed as a parameter in the de- 
sign process. Suppose the equilibrium manifold can be 
parameterized by a scheduling variable 8 E Iw which 
evolves in a compact set 0 C R We assume that A(@) ,  

w Computing an invariant subspace associated with 
a set of n eigenvalues, spec(A,), chosen among 
2n + nq eigenvalues in spec(A,l), that is, 

2789 



B(B), C(8), Ap(8) ,  Bp(8) and Cp(8) in (3) are continu- 
ous functions on 0. Suppose that K(s ,  O i )  in (4) are sta- 
bilizing controllers designed on 8 = &, i = 1,2,  . . . , 7.  

The main role of a scheduling procedure is to provide 
a continuous transition law between operating points, 
8i and &+I,  V i = 1, , T - 1, in order to preserve the 
performance obtained by the LTI controllers in their 
neighborhood. 

Transition laws always introduce distortions in terms 
of stability/performance degradation in the intersample 
behavior. Distortions are kept within acceptable lim- 
its when controller coefficients evolve continuously and 
their ranges of variation are as small as possible. The 
next section discusses an effective method, based on 
observer-based representations, for attacking this prob- 
lem. 

. 

More specifically, the problem addressed in this sec- 
tion is: Given the plants Gzz(s,B) and P22(~,8) (3), 
now considered parameter-dependent, and a set of sta- 
bilizing controllers K(s ,  8,) (4), find a set of equivalent 
observer-based controllers K,(s, 8,) (5), such that the 
underlying eigenstructure of the interpolated controller 
is connected continuously between operating condi- 
tions. This is realized by an homotopy or continua- 
tion technique of Euler-Newton type. This procedure 
allows to compute a dynamically compatible set of LTI 
equivalent controllers and ensures that there exists a 
continuous path connecting their observer-based real- 
izations. 

3.1 Continuation of the selected invariant sub- 
spaces 
Let 8 be the normalized parameter, 8 := (8-8i)/l18i+l - 
8z11. Then for 8 E [ei ,  8i+l] we have e" E [O, 11. A 
homotopy method to compute the eigenpairs of a given 
Hamiltonian matrix H ( 8  = 1) = H(1) is presented in 
[7]. From the eigenpairs of some real matrix H(O), the 
eigenpairs of 

H ( 8 )  := (1 - 8)H(O) + 8H(1) (14) 

are followed separately and successively from e" = 0 to 
8 = 1 using continuation techniques. These techniques - 

are well-suited for parallel computing and large sparse 
matrices. At 8 = 1, the corresponding eigenpairs of 
H(l) are computed. The evolution of an eigenpair as a 
function of 8 is called an eigenpath. 

We propose the use of a similar homotopy method to 
obtain the corresponding set of eigenvalues of adjacent 
Hamiltonian matrices. Instead of following each eigen- 
pair independently, the idea is to follow separately each 
selected invariant subspace corresponding to the chosen 
partition of the Hamiltonian spectrum. This is an in- 
direct way to follow a set of eigenpairs simultaneously. 
In the control application context of this paper, this 
continuation method is then more reliable from a com- 

putational viewpoint since some bifurcation problems 
and ill conditioning due to nearly colinear eigenvectors 
can be bypassed. 

Consider the Hamiltonian matrix 

" : = [  F R  

where F E Etnxn, M E R n k X n k  and R, S are real with 
compatible dimensions. 

Consider also the following sets of equations: 

where A, E RnXn and Ak E Rnk x n k  are real and block- 
diagonal as in (12), Ul E RnXn and Vz E R n k X n k  are 
invertible, UZ E Rnk x n  and VI E I t n X n k .  Suppose that 
the columns of [ U1; v2 ] form a 
basis of a n-dimensional and a nk-dimensional invariaat 
subspace of H ,  respectively. Then, TI = U2UF1 (E 
Itnk x n )  and T3 = VIVL1 ( E  Itnxn&) are the solutions to 
the generalized non-symmetric and rectangular Riccati 
equations 

UZ ] and of [ VI; 

T1F - MT1 +TiRTl - S = 0 

and 
T3M - FT3 -I- T3ST3 - R = 0,  

respectively. Notice that the columns of [ I ;  TI ] 
and of [ T3; I ] also span a n-dimensional and a nk- 
dimensional invariant subspace of H, respectively. 

(18) 

(19) 

If we have H ( & )  = Acl(8i), spec(An(8i)) = 
spec(A(&) - B(ei)Kc(Bi)) and spec(Ak(Oi)) = 
spec(A(&) - B(8i)Kc(&))  U spec(A,(&)) at an operat- 
ing point B i ,  then the continuation of TI(&)  and T3(O1) 
is sufficient to determine the corresponding dynamics 
at the adjacent operating point &+I. 

Let (14) be the homotopy associated to two adjacent 
operating points, H ( 8  = 0) = H ( 0 )  and H ( 8  = 1) = 
H(1).  The Riccati equation 

F(F,S) = F(S)P(S)  - f i ( S ) r l . ( S )  + P ( S ) R ( l ) F ( 8 )  - S(S) = 0, (20) 

where 8 E [0, 11, corresponds to (18) if 
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Note that here T1(8i+l )  corresponds exactly to the first 
partition of T(&+l), while the second partition T2(8i+l )  

is determined by A,(&+l) .  As the solution of a Riccati 
equation is independent of the eigenpair ordering, the 
gains & ( & + I )  and Kf(Bi+l) are independent of the 
ordering of An(&+1) and Ai(&+l ) .  A possible change 
in eigenvalue ordering in the diagonalization process 
(Step 4) would just affect the ordering of the columns of 
TZ(Oi+l). However, the correct ordering is easily recov- 
ered by analyzing the proximity between the coefficients 
of Aq(0i )  and A q ( d i + l ) .  

It is also worthwhile to note that if n k  = n then 
T3(0) = T1(f3)-l, and it is sufficient to perform a con- 
tinuation of T l ( 8 ) .  Yet, for a set of LTI controllers, 
once Step 1 is performed in the beginning of the pro- 
cess (i = 1, for instance), only Steps 2 and 3 are nec- 
essary to determine the entire family of linear state- 
transformation (i = 2, * * . , r ) .  This procedure allows 
to compute all the set of equivalent controllers from a 
unique choice of partition of close-loop eigenvalues and 
ensures that there is a continuous path connecting their 
observer-based realizations. 

3.2 Interpolation 
The proposed method generates an adequate set 
of state-space realizations for interpolation of gain- 
scheduled controllers. When the set of operational 
points is appropriately chosen, a good proximity be- 
tween the corresponding controller coefficients is, in 
general, obtained comparatively to generic realizations. 
So, it can be hoped that a linear interpolation is enough 
to ensure local closed-loop stability for each intermedi- 
ate value. However, there is no restriction to another 
interpolation strategy. 

With regard to the Youla parameters, this methodology 
generates block-diagonal dynamic matrices A, which 

that, in our context, the linear interpolation of A, is sta- 
ble [9]. Since the observer-based structure J 1 1 ( s )  may 
be also considered a full-order stabilizing controller for 
a generic plant (A, B, C), this later result generalizes for 
augmented-order compensators the stability preserving 
interpolation methods proposed in [13] and [14]. 

m s t - ; E M e a t - e a d r ~ g y & .  ftiseasgtosfiaw 

4 Conclusions . 

This paper has considered the computation of a set 
of linear state-space transformations for a family of 
LTI controllers to be scheduled. The transformed set 
of controllers exhibit compatible observer-based struc- 
tures having little dynamic discrepancy. This permits 
continuous interpolation between designs and leads to 
weaker restrictions on the parameter rate-bound that 
guarantees stability. This approach has a physical ap- 
peal and it proceeds in two stages. First, invariant sub- 
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spaces associated with the closed-loop eigenvalues of 
a given operating point are selected to compute a lin- 
ear transformation which separates the controller states 
into plant estimation and Youla parameter states. Sec- 
ondly, a continuation of the selected invariant subspaces 
is performed to obtain a family of consistent linear 
state-space transformations. An algorithm based on 
an Euler-Newton continuation of two generalized non- 
symmetric and rectangular Riccati equations has been 
devised. 

A realistic missile pilot problem has been discussed in 
[9] to demonstrate the advantages of the method: by 
using a simple linear interpolation strategy we have ob- 
tained satisfactory transitions between controllers and 
good physical estimation. Since the placement of the 
LTI controllers and the scheduling strategy have been 
determined, these benefits are generally independent of 
the original controller state-space representations but 
can be highly dependent on other controller proper- 
ties. For instance, a great number of closed-loop dou- 
ble modes resulting from inappropriate controllers can 
prejudice the performance of the approach. 
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