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Abstract

After a brief review of the recent literature dealing with flexible multi-body model-
ling for control design purpose, the paper first describes three different techniques used to
build up the dynamic model of SECAFLEX, a 2 d.o.f. flexible in-plane manipulator driven
by geared DC motors : introduction of local fictitious springs, use of a basis of assumed
Euler-Bernouilli cantilever-free modes and of 5th order polynomial modes. This last tech-
nique allows to take easily into account local masses and inertias, which appear important
in real-life experiments. Transformation of the state space models obtained in a common
modal basis allows a quantitative comparison of the results obtained, while Bode plots of
the various interesting transfer functions relating input torques to output in-joint and tip
measurements give rather qualitative results. A parametric study of the effect of angular
configuration changes and physical parameter modifications (including the effect of rotor
inertia) shows that the three techniques give similar results up to the first flexible modes
of each link when concentrated masses and inertias are present. From the control point of
view, “pathological” cases are exhibited : uncertainty in the phase of the non-colocated
transfer functions, high dependence of the free modes in the rotor inertia value. Robustness
of the control to these kinds of uncertainties appears compulsory.

KEYWORDS : FLEXIBLE MULTIBODY SYSTEMS — 2 D.O.F. MANIPULATOR — DY-
NAMIC MODELLING — GEAR TRAIN DYNAMICS

1. Introduction

Modelling and control of motor-driven flexible multibody chains has recently received a wide attention from
specialists in structural dynamics, mechanical engineering, automatic control, . . . in connection with the
various projects of space manipulators, and on a wider scope with the increasing complexity of spacecrafts and
the better performances required for independent pointing of payloads. The improvement of the cycle rate of
industrial manipulators creates also a concern about the impact of vibrations on performances. Eventually, the
flexible manipulator has often been chosen as an emulator of control problems arising from control/structure
interaction (CSI). A 2 d.o.f. planar manipulator has been built in this scope at CERT/DERA, and named
SECAFLEX (cf. [7]). Its main specificity with respect to other similar set-ups is the drives, which are built
with on-the-shelf DC motors and Harmonic Drive gears, in order to get sufficient joint torque to move the
experiment and to put energy in the flexible members.

The present paper discusses the modelling issues of such experiments on the ground of the parametric data
available on SECAFLEX : we will see that several techniques are available to derive the dynamic model of
such an experiment, which are the subject of numerous papers in technical journals even in the case of simple
beams, and among which the “assumed modes” approach is the most popular. A major issue is however the

The work described in this paper was performed under DRET contract number 89.002.36 ([6], [1])
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choice of the shapes depending upon the effective boundary conditions, as the fact that the joints between
substructures are actively controlled makes these a function of the stiffness of the effectively implemented
control laws.

We compare three of these techniques from the point of view of the data needed to build up the model and
the frequency contents and properties of the models obtained : restricting ourselves to the linear case, which
seems adequate and sufficient to deal with vibration problems, we define typical transfer functions relating
joint torques to measurements on the set-up, and study the variations in the models obtained as functions of
the selected distributed element modelling technique and uncertainty on the physical parameters, in the scope
of further use of the model for control design and validation in simulation. Basically, we know that the control
laws will be grounded on a linear “second order” model including mass, stiffness and damping matrices, and
corresponding input injection and output extraction matrices, and we would like to answer the questions : how
should we fill in these matrices with correct parameters ? What confidence do we have in these parameters ?
What is the influence of local masses and inertias ?

2. Techniques used to derive a dynamic model

2.1. Literature survey

The various journals dealing with dynamics and control (Journal of Guidance, Control and Dynamics, IEEE
Transactions on Robotics and Automation, ASME Transactions on Measurement and Control, . . . ) reflect the
numerous papers published in the conferences on the subject of modelling and control of flexible structures in
general and flexible manipulators in particular. The importance of rigid modes make this last case specific in
the sense that generally the same actuators are used to control the rigid body motion and to prevent excitation
of the flexibility distributed in the links, the interaction between rigid and flexible modes being the lowest
frequency expression of the so-called “spillover”.

A good part of the literature is dedicated to the establishment of knowledge models in the frame of very general
multibody software, oriented towards applications in various fields (space, robotics, automotive industry), and
able to take into account arbitrary complicated topologies. On the other side, a lot of papers deal with beams
as the influence of distributed flexibility is more apparent in the structural parts which have a large aspect
ratio, and a debate is still going on about the convenient assumed modes which should be chosen to build up
the dynamic model, and the kinematic parameters liable to describe the largest set of displacements. We will
restrict ourselves to the open flexible multibody chains, and to modelling in the scope of control design.

The general purpose multibody software ([4], [19], [9], . . . ) is generally based on a modelling of the
substructures by finite element (FE) methods, and provide the user with a frame allowing to include easily the
data coming from FE software and to generate simulations in a reliable manner. These tools seem to appear
too powerful in the case of simple beams and a direct approach is more popular among people dealing with
control of experiments ([5],[13],[21], ...): this assumed modes approach uses generally a set of analytical mode
shapes extracted from Bernouilli-Euler theory of beams with various boundary conditions. The presence of
local masses and inertias complicates rapidly the problem as the establishment of shapes taking into account
the loaded interfaces implies the solution of transcendental equations. The set of shapes is then used to
establish the set of differential equations by a classical Lagrangian or Kane formulation, but the linear part
of the model only needs the expression of the kinetic energy or the equivalent simple scalar products. It is
worth to be mentioned that several authors point out the relative independence of the results with respect to
the precise choice of shapes.

Other approaches can be quoted :

• representation of distributed flexibility by local stiffness, that we proposed for the treatment of singularity
in space manipulators ([8]) and included as a basic feature in our space manipulator simulator SMASP ; an
improvement has been proposed which aims to reduce the degree of approximation through minimization
of the difference with a “truth model” obtained by finite elements ([20]);

• modal impedance aims to replace analytical assumed modes by a quadrupole relating forces and displace-
ments at one end to forces and displacements at the other end, and to solve a transcendental equation for
the whole chain in a limited frequency range, extracting thus free modes in a more reliable numerical
manner ([16], [15]) ;
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• bond-graph techniques have been also proposed to model flexible members ([12], [18]).

These techniques give birth to possibly high order models : the confidence in the prediction of high frequency
components (past the first few low frequency flexible modes) is however not very good : it has been pointed out
that the modelling of deformation as normal to the equilibrium position, which is a very common hypothesis,
leads to inconsistently linearized models, and that a very rough linearization could be preferable to exact
derivation of equations taking into account radial deflection ([10][14]). This discussion is related to the
substructuring issues ([3]), which look very simple in the case of beams and not representative of the real
problem met in the case of large and complicated elements, and we will only keep in mind that it is not sound
to take into account too much modes per substructure.

2.2. Selection of three modelling techniques for SECAFLEX

2.2.1. Available geodynamical data

Figure A.1 shows a rough sketch of the geometry of SECAFLEX, including local masses and inertias, to which
should be added the inertias due to drive rotors and gear trains, as shown in the more detailed sheet of data:

Component Index 1 Index 2

Beam length 1.390 m 1.400 m

Beam height 0.1 m 0.1 m

Beam thickness 0.006 m 0.005 m

Inertia of section ��� �������
	��� ��� ���������
	���
Mass per unit volume � ��������������� � � ����� �������

Flexible part mass 6.50 kg 1.89 kg

Young’s modulus 20600 Mpa 7360 Mpa

EI product !�� ��"#��$ ��� "��%$
Gear stiffness 360 000 Nm/rd 36 000 Nm/rd

Torquemeter stiffness 180 000 Nm/rd 8 000 Nm/rd

Tachometer inertia ���&�('%��� � �)� $ � � '���� �+* � $ ���
Drive rotor inertia ��� ��, ����� � �%$�� � ��� -%�����
.��%$/� �

Wawe generator inertia ��� '��0����� � �%$�� � -�� �#�����
.��%$/� �
In-joint total inertia

(motor side)

��� ������� � �)� $ � � , �&�1��� �
. � $ � �
Gear ratio 80 80

In-joint total inertia
(payload side)

��'�� -1�%$/��� ��� '����2�%$�� �
Table 1 Data sheet for SECAFLEX

2.2.2. Fictitious joint approach

This technique is described in detail in [8]. Due to the planar feature of the experiment, it simply leads to add
1 spring in the middle with stiffness 3�465�7 , 2 springs at 25% and 75% of length with stiffness 8�30495�7 , . . . In-
house developed SMASP software allows to build up the mass matrix taking into account the concentrated
masses and inertias, and inertial effects due to drive rotors having any orientation (a feature not useful here).

2.2.3. Assumed modes approach

We followed the methodology described in [11], with a modification to account for tip payload offset (see fig.
A.2 for a sketch of kinematic parameters). The shapes are cantilever-free shapes for an ideal beam : it would
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be more exact to account for loads, but this point has been rather developed with the technique described in
the following paragraph. With 2 modes per link, the deflection normal to equilibrium position reads ::
;=<?>A@CB�DFEHG9;JIK<?>LDCM�;JI(<?B/DONPGQ;JRK<=>LD?MK;JR�<SB/D (2.1)

The effect of rotor inertia is introduced by modifying the mass matrix obtained.

2.2.4. Assumed polynomial shapes

The sketch of the manipulator shows that geometric offsets and local hub inertias may play an important role
in the modelling, and can be accounted for with analytical modes shapes. We chose to derive a more precise
model using a set of polynomial shapes, in the line of finite element techniques ; however, the flexible parts are
very regular and we felt that superelements describing each link as a whole would perhaps be sufficient (in the
line of modal impedance approaches). We developed then an approach grounded on polynomial approximation
of the deformation along each link, but we selected 5th order polynomials instead of classical 3rd order ones,
to be able to express the interface conditions between the link and the yokes, which are rigidly connected
to the beams. Figure A.3 shows the kinematic parameters that can be selected with these polynomials :
the bending moments at both ends appear in addition to classical translation and rotation. For instance, the
interface condition at the root of the link with a hub of inertia TVU is easily expressed asW�X M(Y1E T
U[ZM R (2.2)

This finite element technique was first validated on a 1 d.o.f. manipulator (the Stanford experiment described
in [17]) and proved efficient to predict the dynamic model : it gives a good accuracy compared to the analytical
assumed mode techniques, with less effort than a classical finite elements approach (where several elements
par link are required). The transfer functions between tip position and joint torque exhibits the non-minimum
phase complex symmetric zeros configuration experimentally found in [17].

Application to SECAFLEX was then made on the basis of the skeleton shown on figure A.4, on which the
kinematical parameters are indicated :\ E^]`_ I _ R M Iba c�d efd M I?d M R?d c�g efg�h (2.3)

These parameters suppose the mass matrix of each link established in a moving frame of angular and
translational rate i_ I and 0 for link 1 and i_ I N ie d N i_ R and ic d Nkj I i_ I for link 2. An alternate set of
parameters may be chosen with a reference of kinematic parameters to the equilibrium (undeformed) position.
It is easier to use but restricted to small motion around the equilibrium.

The selection of 9 parameters gives a 18th order model that can be reduced to 12th order model by modal
truncation or by projection of the kinematic parameters on the first two cantilever free modes of each link (to
compare the results with those of the preceding approach).

3. Comparison between dynamic models

3.1. Structure of the differential equations

The three techniques described in the previous section lead to a set of differential equations which linearized
form has the classical general structure with mass, damping and stiffness matrices (the “second order” form):l ZM�Nnm iM�NpoqM%EHr#s�t u c Ewv%sKM (3.1)

The set of equations must be completed by an observation equation which allows to express measurements
or adequate signals for performance evaluation. The interesting variables in the case of SECAFLEX are
measurements : the motor-driven joints angles and angular velocities _ ; and i_ ; (“colocated” optical encoders
end tachometer measurements) and the angular velocity x of the payload w.r.t. an inertial frame (“non-
colocated” gyrometer measurement). A state space form is easily derived from this set of equations, at the
expense of a loss of the physical insight in the parameters, but is necessary to include the velocities as
functions of the state vector.
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Inside this common structure, the three techniques give birth to quite different models in the second order
form, due to the different parametrization choices for the instantaneous field of deformation of the flexible
beams. In the following equations, in which the in-joint flexibility has not been considered, the exhibitedy{z}| terms in the mass matrix are the inertia terms corresponding to the rigid body motion and should be the
same ; they include the effects of rotor inertia, which is multiplied by the square of the gear ratio on the
diagonal and by the gear ratio off-diagonal.

• fictitious joints approach : the mass matrix contains on the diagonal the inertias as seen from the
successive rotary joints, real or fictitious, and off-diagonal the linear inertial couplings ; the stiffness
matrix is diagonal with zeros for real joints ; the joints variables are part of the state vector and the
payload angular rate is merely the sum of the angular velocities ; in the case of 2 fictitious joints per
link, the sketch of the result is the following :~�������

y���� � � y��b� � �� � � � � �� � � � � �y �/� � � y �=� � �� � � � � �� � � � � �
���������

�~�������
� �������� �������

�����������
~�������
� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

���������
~�������
� �����K�� �����K�

�����������
~�������
� �� �� �� �� �� �

��������� �~�b� �� �� �� � ~� � � � � � �� � � � � �� � � � � ��� � � � � � �� � � � � �� � � � � � ������=��q 
(3.2)

• analytic assumed modes approach : the configuration parameters selected in [11], that we used initially
in this approach, were nor absolute neither relative : the second joint angle � � is defined as the angle
between the undeformed first link and the root of the second link ; the second member matrix injecting
joint torques depends upon the slope of the mode shapes at the tip of the first link ; the mass matrix terms
come from integration of the shapes over the space variable, and the stiffness matrix is still diagonal due
to orthogonality of the analytical shapes. However a linear transformation to a set of parameter including
the relative angle between the tip of the first link and the root of the second one transforms the linear
model under the following form (with 2 shapes per link) :~�������

y ��� y � � � � � �y � � y ��� � � � �� � � � � �� � � � � �� � � � � �� � � � � �
���������

�~������� �
�� �� �=�� � �� � �� �=�
��������� �

~�������
� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

���������
~������� �

�� �� ���� � �� � �� ���
��������� �

~�������
� �� �� �� �� �� �

��������� �~�=� �� �� �� � ~� � � � � � �� � � � � �� � � � � � � � � � � � �� � � � � �� � ¡A¢����£ ¡f¢� � £ ¡f¢� ��£ ¡¤¢�=� £ �� � � ��q 
(3.3)

• polynomial assumed modes approach : with 9 kinematic parameters, the set of differential equation
takes the following form¥¦¦¦¦¦¦¦¦¦¦¦§

¨ª©?©«¨#©b¬® ¯ ¯   ¯ ¨ ¬=© ¨ ¬?¬  ¯ ¯   ¯         ¯ ¯  ¯ ¯   ¯ ¯ ¯  ¯ ¯   ¯                 ¯ ¯  ¯ ¯   ¯         
°�±±±±±±±±±±±²

³¥¦¦¦¦¦¦¦¦¦¦¦§
´K©´ ¬´/µ´/¶´�·´�¸´�¹´/º´�»
°�±±±±±±±±±±±² ¼

¥¦¦¦¦¦¦¦¦¦¦¦§
½¾½¿½ ½ ½ ½ ½ ½ ½½¾½¿½ ½ ½ ½ ½ ½ ½½¾½ ¯ ¯ ¯ ¯ ½ ½ ½½¾½ ¯ ¯ ¯ ¯ ½ ½ ½½¾½ ¯ ¯ ¯ ¯ ½ ½ ½½¾½ ¯ ¯ ¯ ¯ ½ ½ ½½¾½¿½ ½ ½ ½ ¯ ¯ ¯½¾½¿½ ½ ½ ½ ¯ ¯ ¯½¾½¿½ ½ ½ ½ ¯ ¯ ¯

°�±±±±±±±±±±±²
¥¦¦¦¦¦¦¦¦¦¦¦§
´K©´ ¬´/µ´/¶´�·´�¸´�¹´/º´�»
°�±±±±±±±±±±±² À

¥¦¦¦¦¦¦¦¦¦¦¦§
Á ½½Â½½Â½½ Á½Â½½Â½½Â½½Â½½Â½

°�±±±±±±±±±±±² Ã¥§?Ä ©Ä ¬Å °² À ¥§ Á ½Æ½Â½¾½Â½Æ½Â½¾½½ Á ½Â½¾½Â½Æ½Â½¾½½Â½Æ½Â½¾½Â½Æ½Â½¾½FÇ ½È½Â½¾½Â½¾½Â½Æ½Â½½Æ½Â½¾½Â½¾½Â½Æ½Â½ÁÆÁ ½¾½ Á ½Â½Æ½ Á °²�ÉËÊbÌÊ�Í
(3.4)
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The stiffness matrix is no longer diagonal and takes a block-diagonal structure ; the terms in the mass
matrix are of varying importance : small terms are represented by –, large ones by Î . This set of equation
may be projected on a basis of cantilever-free modes to have the same order of the state vector as in
the previous ones.

3.2. Adequate transfer functions for further comparison

The interesting transfer functions which we will use for comparisons belong to two classes : colocated ones
and non-colocated ones. If we write the transfer matrix from the two drive torques to the three measurements,
we isolate the following terms ( Ï is the common denominator including two rigid modes and the convenient
number of free vibration modes, ÐÒÑ stand for a numerator between joints and ÐÔÓ for a numerator from joint
to tip) ; ÕÖb×�Ø×�ÙÚÜÛÝßÞ¾àÏ

ÕÖ ÐáÑ Ø=Ø ÐáÑ Ø ÙÐáÑ Ø Ù ÐáÑ Ù ØÐfÓ Ø ÐAÓ Ù ÛÝãâåä Øä Ù
æ (3.5)

The square sub-transfer-matrix between torques and joint angles is symmetric, and transfer functions ç�è=éêéë andç�è?ìËìë are colocated, while the others are non-colocated.

Other interesting transfer functions can be exhibited : isolation of an element in the preceding transfer matrix
implies that the other term in each equation is equal to 0, i.e. that no torque is applied at the other joint ;
if we consider now the other joint, say í , as locked, we introduce a mono-input transfer matrix relating each
torque to the three measurements with condition

×�î Þðï . The fixed torque may be eliminated between the
equations to give× èä è Þ àÏ�ÐáÑ îñî6ò Ð
Ñ îñî Ð
Ñ èbè)ó Ð
Ñ Ùî è(ô Þ ÐáÑVõèÐáÑ îñî Úä è Þ àÏ�ÐáÑ îñî�ö ÐAÓ è ÐáÑ îñî ó ÐAÓ î ÐáÑ è?è�÷ Þ ÐAÓ õèÐáÑ îñî (3.6)

The zeros of the free transfer functions appear in the denominator of the locked ones (cantilever modes), and
simplifications appear which eliminate the free modes from the transfer functions : these simplifications raise
numerical problems even in simple cases and it is best to establish the locking conditions directly on the
second order differential equations. Due to the symmetry of the above expressions in 3.6, the numerators are
the same in the locked case and ÐáÑ õØ Þ ÐáÑ õÙ , ÐfÓ õØ Þ ÐAÓ õÙ . The transfer functions are used to build up Bode
plots which give rather a qualitative graphical insight into the results ; the gain and phase is reliable only if
some natural damping is added (in the modal basis as usual).

3.3. Numerical comparison : the common modal basis

The quite different set of equations described before are not directly adequate for comparison of results: we
must first look for representations with a minimum number of parameters ; the transfer functions give a
possibility (comparison of the denominator and of the 5 different numerators), but we may also look for a
linear transformation on the initial differential equations. We may first apply the basic result of modal analysis
and find a basis of eigenvectors of the generalized eigenvalue problem on ø and ù to turn the equations
into completely decoupled form, making thus appear the free modes ; the norm of the eigenvectors may in
particular be chosen to get a new mass matrix equal to identity, which makes the squares of the frequencies
appear in the new stiffness matrix.

From the input-output point of view, this state/input normalization is however not sufficient to provide a
minimum set of parameters : the expression of the transfer functions as a decomposition in residues shows
clearly that the product of input matrix ú#û by output matrix ü%û is a constant, so that a further step is required :
if the first actuator is not located at a shape node for any flexible mode, it is possible to normalize the first
column of B matrix to unity (for the flexible modes only) ; moreover the lines of the C matrix corresponding
to joint angles will be in the same ratio as the columns of the B matrix, so that finally the really independent
parameters (describing the flexible modes) appearing in the set of transformed state space equations are the
frequencies, the second column of ú�û , the first line of ü%û and the full line of ü giving the tip angular rate.

The rigid modes raise a problem as the diagonalization has an infinity of solutions, but we can show that the
state subspaces describing the flexible modes are identical if they remain decoupled from the rigid modes, so
the choice of the basis for these is not critical.
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3.4. Numerical example

In order to give some insight in the preceding considerations, we will briefly present the numerical results
obtained, summarized on a data sheet for each angular or parametric configuration. In the case of the fictitious
joints approach, the transfer function analysis gives the following values, where only the results related to
flexible modes are included (frequencies are expressed in rd/s, damping is set to zero) :

• Free modes (non-zero roots of ý ) : þ1ÿ�� ����� þ�� � � �
	�� þ �� � ����� þ 		 � �����
• Joint 1 zeros (roots of � ����� ) : þ � � ���� þ�� � � ����� þ � �� ��� � þ 		 ����� �
• Joint 2 zeros (roots of � ����� ) : þ���� ÿ�ÿ � þ������ ��� � þ ��ÿ�� �	�� þ 		 � � � �
• Joint 1 to tip zeros (roots of �"! � ) : þ1ÿ�� ����� þ�� � � � � þ �
� � �#	 þ � � � �$	
• Joint 2 to tip zeros (roots of �%! � ) : þ � � � � þ�ÿ�� �$	�� þ 	&� � 	 ÿ � þ �
� � ��
Locking of the second joint has the following effects :

• New free modes ý �(' � � ���
• Joint 1 zeros (roots of � �) ) : þ*�� �� � þ � � ���� þ+� ÿ�� � � � þ 		 ����� �
• Joint 1 to tip zeros (roots of �"! ) ) : þ,�� ÿ � þ���� � � þ �
� � � � þ � � � ��
Conversely, locking of the first joint has the following effects :

• New free modes ý � ' � �����
• Joint 2 zeros : identical to previous roots of � �$)
• Joint 1 to tip zeros : identical to previous roots of �%! )
The corresponding common modal basis state space representation takes the following form :

-.0/
12222223
� � � � � �� � � � � �� � � ��� ÿ�� � � �� � � � � � � ÿ � �� � � � � � ÿ 	 �� � � � � ��$�&�

465555557 . '
12222223
��� ��� � � 89��� �� � � 	��� �� �&�� 8:����� � � �� � ��� �#�� 8 � ��� ÿ��� 8;� 	 ����� �� � ���

465555557
<>= �= ��?

<A@ �@ �B? ' < � ��� � ��� 	 ��� � � ��� ��� �� � ��� ��� ������� ���C������� �� 8D� ��� ��ÿ� ��� 89��� � ��$�� 89��� ��� ���&� ���C����� � � ?E FHG ' E � 8:��� � � ÿ � ��� ��� � � ��� � � � 	� 8:��� � � ÿ���ÿ ��� �� � ÿ�ÿ G
(3.7)

The first two differential equations combined to the first two columns of the observation of joint angles are
clearly one decomposition, among the infinity of possibilities, of the rigid motion on a basis of rigid modes.
It is implicitly a result of the choice of eigenvectors made by the generalized eigenvalues problem solver.

3.5. Parametric study

3.5.1. Methodology

The parameters considered may be classified in the following manner :

• parameters defining the angular configuration of the setup, which are not “uncertain” but merely liable to
changes and are moreover measured : due to symmetry, only the angular variable

@ �
belongs to this class ;

• uncertain parameters, like the natural damping, the various local masses and inertias, the stiffness either
located in the joints or spread along the beams ;

• modelling technique driving parameters, that is parameters which may be uncertain in the case of the
present set-up as it is (and on which we may have a better knowledge), but which also have an influence
on the validity of the model depending on the modelling technique used, and for which it is interesting
to consider variations much greater than the a priori confidence that we have for SECAFLEX : these
are mainly the local masses and inertias, and in particular the local inertias due to rotor inertias “seen”
through the gear ratios.
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The data sheets summarizing the numerical results of the kind exhibited in equation 3.7 have been compared
in the following manner : the fictitious joints approach will be the reference case, with 2 springs per link, in
the extended angular configuration ( I�JDKMLON�P�Q ). The other modelling techniques are then compared in that
configuration, and then the parameters are varied : angular configuration up to R#S and TLUN�P�Q , damping up
to 0.01, number of modes taken into account for each link from 1 to 3 (depending on the technique : we
have seen that the polynomial technique provides us with a 18th order model which must be reduced to get
a reference 12th order model), rotor inertias down to zero, local masses down to 1kg, in-joint stiffnesses to
their nominal values instead of infinity.

3.5.2. Reference results

The reference results, given in quantitative form in the preceding section, can be investigated in qualitative
form on the Bode plots : an illustration is given on figure A.5 (“colocated” transfer function V�W JXJ�Y�Z which
alternates pairs of imaginary zeros and pairs of imaginary poles, a couple of these being called “dipoles” in the
sequel) and figure A.6 (non-colocated transfer function V"[&J Y�Z , which includes non-minimum phase zeros) ;
the sketch of these Bode plots differ a bit from the usual results on mono-input flexible beams : the residues
of the higher frequency dipoles decreases slower in the first case (and slower that for the case of transfer
function V�W�\X\ Y�Z , for which only the first dipole has a significant residue), and combinations of non-minimum
phase and imaginary zeros appear in the second case.

The effect of joint locking is a general decrease of the frequencies and an increase of the residues associated
to each dipole (if any) ; the locking of joint 2, which transforms our 2 d.o.f. flexible manipulator in a one
d.o.f. manipulator with a length twice as large, gets back a transfer function from joint 1 torque to tip angular
rate with no imaginary zeros at all. The locking of joint 1, which emulates a 1 d.o.f. manipulator with a
flexible mount, still exhibits more exotic sequences of imaginary and non-minimum-phase zeros.

3.5.3. Influence of modelling techniques

The assumed modes technique with analytical cantilever-free modes leads to a model which resembles the
reference model, with however a general decrease in the frequencies obtained. This can be explained by the
greater apparent length of the flexible members due to a more rough skeleton of the set-up, the geometry of
the yokes being ignored with our implementation of this technique.

The assumed modes with polynomial shapes, once reduced to 12th order, gives a model which differ very
slightly from the reference case, the remarkable points being the presence of 4 complex symmetric zeros
instead of a double pair of non-minimum-phase zeros, a configuration already published about experimental
investigations ([17]). These quantitative differences do not show much on the Bode plots.

3.5.4. Parameter variations

Damping Inclusion of a natural damping in the modal basis does not change much the numerical results,
but regularizes the Bode plots, making the phase and amplitude variation less depending upon the resolution
in frequency. It shows also that dipoles with small residues disappear almost completely for a 0.01 relative
damping.

Number of modes retained per link In the cases of the fictitious joints and assumed analytical mode tech-
niques, to select one mode per link gives almost the same low frequency mode as the truncation of the 12th
order model, so that the global modes are clearly related to each individual link. However, in transfer functionV"[&\ , the “inverted” dipole ]9^�_CS�`�W Y ]a^�_ R�`�W seen before becomes a “regular” one ]�^�_ L�`�W Y ]a^�_ TL�W if only one
fictitious joint per link is selected. This great change in the phase properties of this non-colocated transfer
function is due to the near-zero value of the related C coefficient, which expresses a high uncertainty on the
slope of the corresponding shape at the tip.

The selection of three modes per link simply adds up higher frequency dipoles without changing much the
low frequency properties.
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Angular configuration The change of angular configuration is quite important on the coefficients describing
the rigid modes (there is no difference with the rigid case from this point of view), but does not change much
the free flexible modes : the boundary conditions being pinned, the links vibrate “on themselves”, so that the
characteristic equation does not depend on this parameter. The situation is different for the numerator roots,
which correspond to the cantilever case, and particularly for the numerator of transfer function b"c
d . Figure
A.7 shows the variation of the pole and the zero of the lower frequency dipole when the configuration changes
from 0 to 90 degrees ; the pair of imaginary zeros become real symmetric.

Local masses and inertias The suppression of rotor inertias have an very strong effect on the free vibration
modes, which frequency increases much (multiplication by 3 for the first one, by 2 for the second one) : the
parameter variation in the mass matrix is small compared to this effect ( e�f;gih�jk over e�l�m in joint 1, n�oCp;gih�j#k
over e
q$o f in joint 2). Conversely, the lowest zero of the colocated transfer functions varies very little.

Change in the local masses have less effect on the frequency properties of the model, which increase by a
few r
s�t&u , and the change in the elbow masses has a greater effect than the change in the tip mass, which
only affects slightly the lowest frequency mode.

If we combine the reduction in mass and inertia, considering a “naked” manipulator in which the local and
distributed dynamic parameters are of the same order of magnitude, we can show that the techniques using
fictitious joints and polynomial assumed modes give still coherent results, while the analytical assumed modes
approach gives quite different results : the cantilever free shapes seem too inadequate in this case where the
beams are really pinned on the joints.

4. Conclusion

We would like to highlight the following points, in the scope of further use of the dynamic model to design
control laws taking explicitly into account the flexibility :

• flexible modes are more “visible" from the “elbow” than from the “shoulder” (to use anthropomorphic
expressions), and the multivariable feature adds to the variety of situations illustrating control/structure
interaction problems that can be emulated with a testbed ;

• the three techniques investigated give quite equivalent results for the manipulator including local masses
and inertias ; an inadequate choice of the assumed mode shapes has no consequences on the model unless
the masses and inertias are regularly distributed along the manipulator : this will not be the case for
geared motor drives, in which the concentration of inertia due to gear ratio is much higher than any
“natural” inertia ; in other words, these concentrated inertias regularize the dynamic model with respect
to flexibility (as they do in fact in the rigid case with respect to payload variation) ;

• as a consequence, the flexible beams of SECAFLEX have quite the behavior of massless springs, which are
quite satisfactorily approximated with local fictitious springs : this technique seems sufficient to derive
initial models for control design ; supplementary efforts towards a more precise dynamic modelling
should rather be directed towards mechanical engineering modelling, including friction, backlash, . . . ,
which importance in the final performances of the control will probably be greater than higher frequency
vibration components ;

• 2 modes per link seem quite sufficient to describe the dynamics of the set-up, 1 mode per link giving a
reduced order model quite satisfactory for control design ;

• the study allows to exhibit two major “pathological” cases from the point of view of parameter uncertainty,
which should be accounted for by the control :

– for co-located transfer functions relating joint angular measurements to joint torques, the uncertainty
in the rotor inertia (including the inertia of the gear train on the motor side) which makes a slight
change of one coefficient of the mass matrix, changes the free vibration modes by a great amount ;

– for non-colocated transfer functions relating the tip angular rate to the joint torques, the angular
configuration variation creates a change in the phase properties of the transfer function which could
drive easily the control to instability.

9



The first problem may be academic as the precise identification of these uncertain inertias is possible, even on
a simplified model of the joint. The second one is an avatar of the more general problem of the confidence
in the numerators of the transfer functions appearing in flexible structure modelling, and raises the challenge
of a control law achieving robustness to these kind of uncertainties. A possible approach of the problem is
discussed in [2] which addresses the control synthesis on the basis of the models discussed here using recent
robust control theory.
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Figure 1: Geodynamic skeleton of 2 d.o.f. manipulator SECAFLEX

Figure 2: Geodynamic skeleton of 2 d.o.f. manipulator for assumed Bernouilli-Euler modes approach
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Figure 3: Kinematic parameter of link superelement

Figure 4: Kinematic parameters chosen for assumed polynomial shapes
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Figure 5: Bode plot of colocated transfer functionn j22/∆(reference case, 0.001 damping)
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Figure 6: Bode plot of non-colocated transfer functionne2/∆(reference case, 0.001 damping)
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Figure 7: Evolution of low frequency poles (x) and zeros (o) of transfer function during a change in angular configuration
from 0 to 90 degrees
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