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Abstract This paper presents a general kinematic
analysis method for complex gear mechanisms. This
approach involves the null-space of the adjacency
matrix associated with the graph of the mechanism
weighted by complex coefficients. It allows to com-
pute the rotational speed ratios of all the links and
the frequency of all the contacts in this mechanism
(including roll bearings). This approach is applied
to various examples including a two degrees of free-
dom car differential.
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1 Introduction

The research explained in this paper takes its source in
the domain of the Health and Usage Monitoring Sys-
tems (HUMS) of helicopters. Nowadays, a lot of studies
are done on such systems [1]. A very important part of
studies to improve the performances of HUMS concerns
the vibration analysis of the transmission, and espe-
cially of the Main Gear Box (MGB). The aim of these
studies is to identify defaults on the MGB using vibra-
tion analysis. In fact, each default of contact between
the different links of a complex system, as a MGB, can
generate an harmonic disturbance at a precise angular
frequency in the vibratory signal.

In that domain, a few researches have led to the use of
Kalman filters on angularly sampled signals [2]. Such
filters can provide a good estimation of the magnitude
and phase of an harmonic component in a signal when
its frequency is well-known [3]. So, to create the dy-
namic Kalman model, a very good knowledge of (an-
gular) frequencies of all the contacts in this mechanism
(including roll bearings) is required. To determine these
frequencies, rotational speed ratios of the various links
of the mechanism is required first of all.

There are a lot of kinematic analysis approaches for dif-
ferent types of gear trains. The tabular method is com-
monly used but can involve a lot of calculation, and
cannot give the velocities of elements whose rotation
axis are not on the input/output axis [4]. The vector
analysis method gives very good results for bevel gears,

but is very complex and can lead to human mistakes [5].
The graph theory method can be easily computerized,
and can give the velocities of all elements of the gear
trains. It can also be adapted for bevel gears [6]. It has
been studied by Nelson in [7] so as to find the angular
velocities of all links in bevel epicyclic gear trains. It is
also limited to gear trains whose input and output axes
are co-linear.

In this paper, a new kinematic analysis method, based
on the work of Nelson, is introduced. It’s objective is
to list all the mechanical contacts between all elements
in the transmission system (ball-bearing, gears...) and
for each of these contact, to find its angular apparition
rate, that is the number of times this contact appears
for one revolution of the input shaft. Of course, to solve
this problem, a general tool to compute all the speed
ratios between the links of the transmission is required.

There is a few advantages to this method. The most
important of them is that it is possible to analyze very
complex mechanisms, as long as its internal composi-
tion is known. For example, it is possible to deal with a
system whose input and output axes are not co-linear.
Systems with several degrees of freedom, as a car dif-
ferential can also be studied with this method.

The first section presents the kinematic analysis
method. In the second section, examples are presented
to demonstrate the interest and the generality of this
method : a simple epicyclic bevel gear train and a car
differential.

2 Kinematic Analysis Method

2.1 Speed ratio matrix

In this section, the kinematic analysis method is intro-
duced. First, it is important to understand that the
difference with the kinematic analysis methods already
existing, consists in the introduction of complex num-
bers in the definition of each link of the mechanism.

The first step of that method is to build the table T
of mechanism links and joints. For a mechanism with
N links this table is a N × N table representing the
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kinematics graph of the mechanism. Only mechanisms
with turning pairs (revolute joints) or gear pairs are
considered here. The element (i, j) of T denotes the
interaction of the link i on the link j. The table T is
built following a few rules:

• Turning-pairs are noted (p) for the elements (i, j)
and (j, i).

• For gear pairs, the element (i, j) is equal to
Nie

θi

√
−1 and (j, i) to Nje

θj

√
−1, where Ni and

Nj are respectively the number of tooth on ele-
ments i and j. θi (respectively θj) is the angle
between the axis of rotation and the axis of the
gear tooth of element i (respectively j) in con-
tact with element j (respectively i), counted in
the positif clockwise and so that |θ| < π/2 for an
internal gear and π > |θ| > π/2 for an external
gear.

• Otherwise, elements of T stay empty.

Lastly the reference (carrier) link k is also required for
each gear pair. The reference link is the link in which
the contact point of the gear pair is motionless (the car-
rier link for an epicycloidal gear). Then it is possible
to express the Willis formula under the form:

T (i, j)(ωi − ωk) + T (j, i)(ωj − ωk) = 0 (1)

where, T (i, j) and T (j, i) are the elements (i, j) and
(j, i) of the matrix T , ωi and ωj are respectively the
rotational speeds of the links i and j involved in the
gear pair, and ωk is the rotational speed of the refer-
ence link k of that gear pair. Note that Willis formula
is used in a more general context since coefficients of T
are complex.

The second step, after the construction of the table T ,
is to build the adjacency matrix M . This matrix will
be used to solve the kinematic analysis. Inspecting the
upper triangular part of T , the matrix M is built line
per line. For each gear-pair (i, j), with reference link
k, a new line l is added to matrix M following the rules
from equation (1):

• M(l, i) = T (i, j),

• M(l, j) = T (j, i),

• M(l, k) = −T (i, j)− T (j, i),

• 0 elsewhere.

Let us consider Ω = [ω1, ω2, · · · ωN ]T the vector of ro-
tational speeds of the N links of the mechanism. Then
Ω is solution of the equation:

MΩ = 0 , (2)

that is:
Ω ∈ Ker[M ] (3)

where Ker(M) denotes the null space of matrix M
which can be easily computed using linear algebra tools
(for example the function null in Matlab). The di-
mension of this null space represents the number of de-
grees of freedom (d.o.f.) Ndof of the mechanism:

Ndof = N − rk(M) (4)

where rk(M) is the rank of matrix M . In other words
Ω0 = Ker(M) is the N × Ndof matrix composed of
the Ndof vectors spanning this null space. In the one
d.o.f. case (Ndof = 1), Ω0 can be normalized in such
a way that Ω0(r) = 1 where r is the index of the in-
put shaft. This way, Ω0(i) corresponds to the speed
ratio of the link i w.r.t to link r. In the sequel, Ω0 is
called the speed ratio vector (or matrix in the multi
d.o.f. case). In the general case, the vector of rotational
speeds Ω can be parameterized in the following way:

Ω = Ω0Λ (5)

where Λ is Ndof×1 vector of multiplicative coefficients.

In the multi d.o.f. case, it is possible to add some con-
straints to be met by Ω in order to reduce the number
of degrees of freedom:

CΩ = 0, ⇒ Ω ∈ Ker
[
M
C

]
;

For example it is possible to null the speed of link i
(ωi = 0) using :

C = [ 0 · · · 0 1 0 · · · 0 ] .
1 · · · i− 1 i i+ 1 · · · N

Lastly, it is important to notice that Ω is a complex
vector. That way, the direction of the rotational speed
ωi of link i (in gear pair with link j) can be determined
(in the plane containing links i and j axes). That will
be illustrated in the first example.

2.2 Contact frequencies

In the context of vibration analysis, it appears that it
can be useful to know all the frequencies of contacts
in gear-pairs or turning pairs (that is : in ball or roll
bearings). A default in a particular contact will pro-
duce an harmonic disturbance with a great magnitude
at a known frequency.

Default frequencies in gear pairs For a gear-pair (i, j)
between links i and j with a reference link k, one can
distinguish 3 contact default frequencies :

• the gear frequency ωgij defined by:

ωgij = |T (i, j)||ωi − ωk| = |T (j, i)||ωj − ωk| ,



• the frequency of a default on a single tooth of link
i (resp. j):

ωgi = |ωi − ωk| (resp. ωgj = |ωj − ωk|) .

There are Ni = |T (i, j)| (resp. Nj = |T (j, i)|)
different and independent sources of such an har-
monic disturbance because there are Ni (resp.
Nj) teeth on link i (resp. j).

Default frequencies in ball (or roll)-bearings

For turning pairs involving ball (or roll)-bearing, con-
tact defaults can appear at several frequencies (even for
one element), depending on where the default is located
(on the internal or external ring, or on a ball).

Figure 1: Example of ball bearing

The figure (1) represents a ball bearing with :

• Dm : its mean diameter,

• db : the ball diameter,

• Z : the number of balls.

In the sequel, indices i, e, c and b refer to the internal
ring, the external ring, the cage and the ball, respec-
tively. Under the rolling without slipping assumption,
the following formulae allows to compute various de-
fault frequencies in a ball bearing [8].

Frequency ωdi of apparition of a default on the
internal ring

ωdi = Z|ωi − ωc| =
Z

2
(1 +

db
Dm
|ωi − ωe|) (6)

Frequency ωde of apparition of a default on the
external ring

ωde = Z|ωe − ωc| =
Z

2
(1− db

Dm
|ωi − ωe|) (7)

Frequency ωdb of apparition of a default on a ball

ωdb = 2|ωb − ωc| =
Dm

db
(1− d2

b

D2
m

|ωi − ωe|) (8)

α

Figure 2: Ball bearing with angular contacts

These formulaes are still true for roll or ball bearings
with angular contacts changing d by d cosα where α is
the contact angle (see figure (2)).

3 Examples

In this section, two examples of mechanisms are ana-
lyzed using this method. The first one is a simple bevel
planet that was studied in the article of Nelson. The
second one is a 2 d.o.f. car differential taking into ac-
count roll bearings.

Example 1
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Figure 3: Mechanism with a simple bevel planet [7]

The epicyclic gear with a simple bevel planet is shown
in figure 3. In this mechanism, the link # 1 is the sun,



the link # 2 is the outer ring gear (and the input shaft),
link # 3 is the planet and link # 4 is the carrier. The
numerical data are: N1 = 15, N2 = 25 and N3 = 10,
α = π/3 and β = π/4.

1 2 3 4
1 N1e

√
−1β (p)

2 N2e
√
−1(2α−β−π) (p)

3 N3e
√
−1(β−α) N3e

√
−1(α−β) (p)

4 (p) (p) (p)

Table 1: Table of links and joints (example 1)

The table T of links and joints is depicted in Table (1)
and the adjacency matrix is given by equation (9).

Then, the null space of M reads:

Ker(M) =


0.357e2.147

√
−1 0.729e−0.070

√
−1

0.412e−0.686
√
−1 0.444e0.633

√
−1

0.828e0.125
√
−1 0.069e−0.106

√
−1

0.136e−0.382
√
−1 0.517e0.284

√
−1


(10)

As it has already been said, the speed ratios are com-
plex in this method, so as to express the different angles
of rotational speed vectors. The nominal value of the
speed is in fact the modulus of the element of Ker(M).

As it is proposed in the example of Nelson, ω1 is set
to zero. With this constraint (that is: C = [1 0 0 0]),
the speed ratio vector normalized w.r.t the input shaft
(r = 2) reads:

Ω0 = Ker

([
M
C

])
=


0
1

1.36e0.639
√
−1

0.6250

 (11)

Remark: one can compute the angular velocity of 3
with respect to 4 (ω3/4) and check that the direction of
the relative velocity is given by the angle α. Indeed :

ω3/4 = ω3 − ω4 = 0.9375eπ/4
√
−1 (12)

From (11), ω2 = 1.6ω4. It is the same result as the
one of Nelson [7]. Lastly, for ω2 = 10Hz, the gear
frequencies are :

ωg13 = ωg23 = 93.75Hz . (13)

Example 2 In the following example we consider a car
differential depicted in Figures 4 and 5.

Figure 4: Picture of the car differential
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Figure 5: Car Differential

The table T of links and joints is given in Table (2)
with N1 = 13, N2 = 65, N3 = 10, N4 = 14, θ1 = 0 and
θ2 = π/4. Then, the corresponding adjacency matrix
is given by equation (14).

Imposing the rotational speed of the car frame (the link
# 1) is equal to 0, then the speed ratio matrix Ω0 can
be normalized with respect to the two wheels (links #
3 and 4):

Ω0 =



0 0
−2.5 −2.5

1 0
0 1

0.86e0.95
√
−1 0.86e−0.95

√
−1

0.86e−0.95
√
−1 0.86e0.95

√
−1

0.5 0.5


. (15)

The car differential is obviously a 2 d.o.f mechanism, as
long as it is made so that the two wheels of the car can
spin at different speeds. The two columns of Ω0 give



M =

[
15eπ/4

√
−1 0 10e−π/12

√
−1 −15eπ/4

√
−1 − 10e−π/12

√
−1

0 25e−7π/12
√
−1 10eπ/12

√
−1 −25e−7π/12

√
−1 − 10eπ/12

√
−1

]
(9)

1 2 3 4 5 6 7
1 (p) (p) (p) (p)
2 (p) N1e

θ1
√
−1

3 (p) N4e
−θ2
√
−1 N4e

θ2
√
−1 (p)

4 (p) N4e
θ2
√
−1 N4e

−θ2
√
−1 (p)

5 N3e
θ2
√
−1 N3e

−θ2
√
−1 (p)

6 N3e
−θ2
√
−1 N3e

θ2
√
−1 (p)

7 (p) N2e
−θ1
√
−1 (p) (p) (p) (p)

Table 2: Table of links and joints for the car differential (example 3)

M =


−78 13 0 0 0 0 65

0 0 14e−π/4
√
−1 0 10eπ/4

√
−1 0 −14e−π/4

√
−1 − 10eπ/4

√
−1

0 0 14eπ/4
√
−1 0 0 10e−π/4

√
−1 −14eπ/4

√
−1 − 10e−π/4

√
−1

0 0 0 14eπ/4
√
−1 10e−π/4

√
−1 0 −14eπ/4

√
−1 − 10e−π/4

√
−1

0 0 0 14e−π/4
√
−1 0 10eπ/4

√
−1 −14e−π/4

√
−1 − 10eπ/4

√
−1

 (14)

the speed ratios when one wheel is locked and the other
is free. The most common behavior (driving straight
ahead) corresponds when both wheels spin at the same
speed ω3 = ω4 = ω. Then the rotational speed vector
is:

Ω = Ω0

[
ω
ω

]
= [ 0 −5 1 1 1 1 1 ]Tω .

Another well-known behavior appears when there is no
transmission ω2 = 0 and the car is jacked up. Then the
two wheels spin in opposite sense at the same speed
ω3 = −ω4 = ω. Indeed:

Ω = Ω0

[
ω
−ω

]

=



0
0
1
−1

1.4eπ/2
√
−1

−1.4e−π/2
√
−1

0


ω .

Numerical application : let’s consider the example
of a car turning a right corner at a speed of 30km/h.
It can be shown that the rotational speeds of the two
wheels are ω3 = 26 rd/s and ω4 = 30 rd/s. Then the

rotational speed vector becomes:

Ω = Ω0

[
26
30

]
=



0
−140

26
30

28.14e−0.10
√
−1

28.14e0.10
√
−1

28


(rd/s) . (16)

Now it is possible to take into account the data relative
to the 2 roll bearings in the revolute joint between links
1 and 7:

Dm = 54mm, db = 5mm,Z = 25, α = 15 .

Then, the Table (3) in appendix lists all the frequencies
of defaults that could be found in this mechanism, their
locations, and the number of different sources.

4 Conclusions

The kinematic method introduced in this paper is an
improvement of the Nelson’s method. Based on the
same principle and the same formula (the Willis For-
mula), this approach solves the model using the null
space of the adjacency matrix associated to the kine-
matic graph of the mechanism. It allows complex mech-
anisms with several degrees of freedom to be solved.

The other advantage of this method is the introduction
of complex coefficients in the adjacency matrix. It is
now possible to deal with complex systems with non
co-linear input and output axis.



It is also possible to have access to the gear frequen-
cies and the frequencies of all defaults which could ap-
pear in the various contacts of the mechanism including
contacts inside ball (roll)-bearings. Such a kinematic
analysis can be very useful in the context of vibration
analysis.

Further works will be focused on different directions:

• this approach will be applied to analyze the Main
Gear Box (MGB) of an helicopter. This analy-
sis will be used in the Kalman filter involved in
the signal processing of sensors (accelerometers)
distributed on the MGB in order to diagnose its
health,

• the approach will be also linked to the graph the-
ory (Hsu and Lam [6]) in order to develop a pro-
cedure to find automatically the reference (car-
rier) link of gear pairs,

• lastly, the aim of that study was to obtain a list
of frequencies at which a default can appear. In
that context, there was no interest in Power-flow
efficiency or Efficiency analysis. It may be inter-
esting to lead some studies to extend this method
to these two domains.
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A Appendix

Pair Frequency (rd/s) Description Number of sources
(1,7) 381.3 Default on the inside ring of bearing 1 1

318.7 Default on the outside ring of bearing 1 1
310.6 Default on a roll of bearing 1 25
381.3 Default on the inside ring of bearing 2 1
318.7 Default on the outside ring of bearing 2 1
310.6 Default on a roll of bearing 2 25

(2,7) 1820 Gear frequency
140 Default on a tooth of link 2 13
28 Default on a tooth of link 7 65

(3,5), (3,6), (4,5), (4,6) 28 Gear frequency
2 Defaults on a tooth of links 3 and 4 14

2.8 Defaults on a tooth of links 5 and 6 10

Table 3: List of possible default frequencies in the car differential


