553 research outputs found

    Spatially resolved spectroscopy of the globular cluster RZ 2109 and the nature of its black hole

    Get PDF
    We present optical HST/STIS spectroscopy of RZ 2109, a globular cluster in the elliptical galaxy NGC 4472. This globular cluster is notable for hosting an ultraluminous X-ray source as well as associated strong and broad [OIII] 4959, 5007 emission. We show that the HST/STIS spectroscopy spatially resolves the [OIII] emission in RZ 2109. While we are unable to make a precise determination of the morphology of the emission line nebula, the best fitting models all require that the [OIII] 5007 emission has a half light radius in the range 3-7 pc. The extended nature of the [OIII] 5007 emission is inconsistent with published models that invoke an intermediate mass black hole origin. It is also inconsistent with the ionization of ejecta from a nova in the cluster. The spatial scale of the nebula could be produced via the photoionization of a strong wind driven from a stellar mass black hole accreting at roughly its Eddington rate.Comment: 7 pages, 4 figures - accepted for publication in Ap

    Photometric Observations of Three High Mass X-Ray Binaries and a Search for Variations Induced by Orbital Motion

    Full text link
    We searched for long period variation in V-band, Ic-band and RXTE X-ray light curves of the High Mass X-ray Binaries (HMXBs) LS 1698 / RX J1037.5-5647, HD 110432 / 1H 1249-637 and HD 161103 / RX J1744.7-2713 in an attempt to discover orbitally induced variation. Data were obtained primarily from the ASAS database and were supplemented by shorter term observations made with the 24- and 40-inch ANU telescopes and one of the robotic PROMPT telescopes. Fourier periodograms suggested the existence of long period variation in the V-band light curves of all three HMXBs, however folding the data at those periods did not reveal convincing periodic variation. At this point we cannot rule out the existence of long term V-band variation for these three sources and hints of longer term variation may be seen in the higher precision PROMPT data. Long term V-band observations, on the order of several years, taken at a frequency of at least once per week and with a precision of 0.01 mag, therefore still have a chance of revealing long term variation in these three HMXBs.Comment: Accepted, RAA, May, 201

    A high resolution line survey of IRC+10216 with Herschel. First results: Detection of warm silicon dicarbide SiC2

    Get PDF
    We present the first results of a high-spectral-resolution survey of the carbon-rich evolved star IRC+10216 that was carried out with the HIFI spectrometer onboard Herschel. This survey covers all HIFI bands, with a spectral range from 488 to 1901GHz. In this letter we focus on the band-1b spectrum, in a spectral range 554.5-636.5GHz, where we identified 130 spectral features with intensities above 0.03 K and a signal-to-noise ratio >5. Detected lines arise from HCN, SiO, SiS, CS, CO, metal-bearing species and, surprisingly, silicon dicarbide (SiC2). We identified 55 SiC2 transitions involving energy levels between 300 and 900 K. By analysing these rotational lines, we conclude that SiC2 is produced in the inner dust formation zone, with an abundance of ~2x10^-7 relative to molecular hydrogen. These SiC2 lines have been observed for the first time in space and have been used to derive an SiC2 rotational temperature of ~204 K and a source-averaged column density of ~6.4x10^15 cm^-2. Furthermore, the high quality of the HIFI data set was used to improve the spectroscopic rotational constants of SiC2.Comment: A&A HIFI Special Issue, 201

    Evolutionary trade-offs associated with loss of PmrB function in host-adapted <i>Pseudomonas aeruginosa</i>

    Get PDF
    Pseudomonas aeruginosa colonises the upper airway of cystic fibrosis (CF) patients, providing a reservoir of host-adapted genotypes that subsequently establish chronic lung infection. We previously experimentally-evolved P. aeruginosa in a murine model of respiratory tract infection and observed early-acquired mutations in pmrB, encoding the sensor kinase of a two-component system that promoted establishment and persistence of infection. Here, using proteomics, we show downregulation of proteins involved in LPS biosynthesis, antimicrobial resistance and phenazine production in pmrB mutants, and upregulation of proteins involved in adherence, lysozyme resistance and inhibition of the chloride ion channel CFTR, relative to wild-type strain LESB65. Accordingly, pmrB mutants are susceptible to antibiotic treatment but show enhanced adherence to airway epithelial cells, resistance to lysozyme treatment, and downregulate host CFTR expression. We propose that P. aeruginosa pmrB mutations in CF patients are subject to an evolutionary trade-off, leading to enhanced colonisation potential, CFTR inhibition, and resistance to host defences, but also to increased susceptibility to antibiotics.</p

    On the physical structure of IRC+10216 Ground-based and Herschel observations of CO and C2H

    Get PDF
    Context. The carbon-rich asymptotic giant branch star IRC +10 216 undergoes strong mass loss, and quasi-periodic enhancements of the density of the circumstellar matter have previously been reported. The star’s circumstellar environment is a well-studied and complex astrochemical laboratory, in which many molecular species have been proved to be present. CO is ubiquitous in the circumstellar envelope, while emission from the ethynyl (C2H) radical is detected in a spatially confined shell around IRC +10 216. We recently detected unexpectedly strong emission from the N = 4−3,   6−5,   7−6,   8−7, and 9−8 transitions of C2H with the IRAM 30 m telescope and with Herschel/HIFI, which challenges the available chemical and physical models. Aims. We aim to constrain the physical properties of the circumstellar envelope of IRC +10 216, including the effect of episodic mass loss on the observed emission lines. In particular, we aim to determine the excitation region and conditions of C2H to explain the recent detections and to reconcile them with interferometric maps of the N = 1−0 transition of C2H. Methods. Using radiative-transfer modelling, we provide a physical description of the circumstellar envelope of IRC +10 216, constrained by the spectral-energy distribution and a sample of 20 high-resolution and 29 low-resolution CO lines – to date, the largest modelled range of CO lines towards an evolved star. We furthermore present the most detailed radiative-transfer analysis of C2H that has been done so far. Results. Assuming a distance of 150 pc to IRC +10 216, the spectral-energy distribution was modelled with a stellar luminosity of 11300 L⊙ and a dust-mass-loss rate of 4.0 × 10-8   M⊙ yr-1. Based on the analysis of the 20 high-frequency-resolution CO observations, an average gas-mass-loss rate for the last 1000 years of 1.5 × 10-5 M⊙ yr-1 was derived. This results in a gas-to-dust-mass ratio of 375, typical for this type of star. The kinetic temperature throughout the circumstellar envelope is characterised by three power laws: Tkin(r) ∝ r-0.58 for radii r ≤ 9 stellar radii, Tkin(r) ∝ r-0.40 for radii 9 ≤ r ≤ 65 stellar radii, and Tkin(r) ∝ r-1.20 for radii r ≥ 65 stellar radii. This model successfully describes all 49 observed CO lines. We also show the effect of density enhancements in the wind of IRC +10 216 on the C2H-abundance profile, and the close agreement we find of the model predictions with interferometric maps of the C2H N = 1−0 transition and with the rotational lines observed with the IRAM 30 m telescope and Herschel/HIFI. We report on the importance of radiative pumping to the vibrationally excited levels of C2H and the significant effect this pumping mechanism has on the excitation of all levels of the C2H-molecule

    Prevalence of Dementia and Mild Cognitive Impairment in Indigenous Bolivian Forager-Horticulturalists

    Get PDF
    Introduction We evaluated the prevalence of dementia and mild cognitive impairment (MCI) in indigenous Tsimane and Moseten, who lead a subsistence lifestyle. Methods Participants from population-based samples ≥ 60 years of age (n = 623) were assessed using adapted versions of the Modified Mini-Mental State Examination, informant interview, longitudinal cognitive testing and brain computed tomography (CT) scans. Results Tsimane exhibited five cases of dementia (among n = 435; crude prevalence = 1.2%, 95% confidence interval [CI]: 0.4, 2.7); Moseten exhibited one case (among n = 169; crude prevalence = 0.6%, 95% CI: 0.0, 3.2), all age ≥ 80 years. Age-standardized MCI prevalence was 7.7% (95% CI: 5.2, 10.3) in Tsimane and 9.8% (95% CI: 4.9, 14.6) in Moseten. Cognitive impairment was associated with visuospatial impairments, parkinsonian symptoms, and vascular calcification in the basal ganglia. Discussion The prevalence of dementia in this cohort is among the lowest in the world. Widespread intracranial medial arterial calcifications suggest a previously unrecognized, non-Alzheimer\u27s disease (AD) dementia phenotype

    The glutathione biosynthetic pathway of Plasmodium is essential for mosquito transmission

    Get PDF
    1Infection of red blood cells (RBC) subjects the malaria parasite to oxidative stress. Therefore, efficient antioxidant and redox systems are required to prevent damage by reactive oxygen species. Plasmodium spp. have thioredoxin and glutathione (GSH) systems that are thought to play a major role as antioxidants during blood stage infection. In this report, we analyzed a critical component of the GSH biosynthesis pathway using reverse genetics. Plasmodium berghei parasites lacking expression of gamma-glutamylcysteine synthetase (γ-GCS), the rate limiting enzyme in de novo synthesis of GSH, were generated through targeted gene disruption thus demonstrating, quite unexpectedly, that γ-GCS is not essential for blood stage development. Despite a significant reduction in GSH levels, blood stage forms of pbggcs− parasites showed only a defect in growth as compared to wild type. In contrast, a dramatic effect on development of the parasites in the mosquito was observed. Infection of mosquitoes with pbggcs− parasites resulted in reduced numbers of stunted oocysts that did not produce sporozoites. These results have important implications for the design of drugs aiming at interfering with the GSH redox-system in blood stages and demonstrate that de novo synthesis of GSH is pivotal for development of Plasmodium in the mosquito

    A review of the ecological value of Cusuco National Park an urgent call forconservation action in a highly threatened Mesoamerican cloud forest

    Get PDF
    Cloud forests are amongst the most biologically unique, yet threatened, ecosystems in Mesoamerica. We summarize the ecological value and conservation status of a well-studied cloud forest site: Cusuco National Park (CNP), a 23,440 ha protected area in the Merendón mountains, northwest Honduras. We show CNP to have exceptional biodiversity; of 966 taxa identified to a species-level to date, 362 (37.5%) are Mesoamerican endemics, 67 are red-listed by the IUCN, and at least 49 are micro-endemics known only from the Merendón range. CNP also provides key ecosystem services including provision of drinking water and downstream flood mitigation, as well as carbon sequestration, with an estimated stock of 3.5 million megagrams of carbon in 2000. Despite its ecological importance, CNP faces multiple environmental threats and associated stresses, including deforestation (1,759 ha since 2000 equating to 7% of total forest area), poaching (7% loss of mammal relative abundance per year), amphibian declines due to chytridiomycosis (70% of species threatened or near-threatened), and climate change (a mean 2.6 °C increase in temperature and 112 mm decrease in rainfall by 2100). Despite conservation actions, including community ranger patrols, captive-breeding programmes, and ecotourism initiatives, environmental degradation of CNP continues. Further action is urgently required, including reinforcement and expansion of ranger programmes, greater stakeholder engagement, community education programmes, development of alternative livelihood projects, and legislative enforcement and prosecution. Without a thorough and rapid response to understand and mitigate illegal activities, the extirpation and extinction of species and the loss of vital ecosystem services are inevitable in the coming decades

    Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development.

    Get PDF
    BACKGROUND: We present the genome sequence of the tammar wallaby, Macropus eugenii, which is a member of the kangaroo family and the first representative of the iconic hopping mammals that symbolize Australia to be sequenced. The tammar has many unusual biological characteristics, including the longest period of embryonic diapause of any mammal, extremely synchronized seasonal breeding and prolonged and sophisticated lactation within a well-defined pouch. Like other marsupials, it gives birth to highly altricial young, and has a small number of very large chromosomes, making it a valuable model for genomics, reproduction and development. RESULTS: The genome has been sequenced to 2 × coverage using Sanger sequencing, enhanced with additional next generation sequencing and the integration of extensive physical and linkage maps to build the genome assembly. We also sequenced the tammar transcriptome across many tissues and developmental time points. Our analyses of these data shed light on mammalian reproduction, development and genome evolution: there is innovation in reproductive and lactational genes, rapid evolution of germ cell genes, and incomplete, locus-specific X inactivation. We also observe novel retrotransposons and a highly rearranged major histocompatibility complex, with many class I genes located outside the complex. Novel microRNAs in the tammar HOX clusters uncover new potential mammalian HOX regulatory elements. CONCLUSIONS: Analyses of these resources enhance our understanding of marsupial gene evolution, identify marsupial-specific conserved non-coding elements and critical genes across a range of biological systems, including reproduction, development and immunity, and provide new insight into marsupial and mammalian biology and genome evolution
    corecore