54 research outputs found

    Mismatch and synchronization:Influence of asymmetries in systems of two delay-coupled lasers

    Get PDF
    We study the synchronization properties of the delay dynamics of two identical semiconductor lasers coupled through a semitransparent mirror. Via an analytical and numerical approach, we investigate the influence of asymmetries, in particular mismatches of self- and cross-coupling strength and differences in self- and cross-coupling delay. We show that the former mismatch affects the stability of the zero-lag state but not the dynamics within the synchronization manifold, while the latter mismatch does not affect the quality of synchronization but alters the dynamics significantly. Our results are extended to different unidirectional coupling schemes. This is highly relevant for communication schemes utilizing chaotic dynamics. Finally, the influence of nonlinear gain saturation on the dynamics and stability of synchronization is discussed

    Regimes of operations of semiconductor ring lasers under optical injection and applications to optical signal processing

    Get PDF
    We present a detailed characterization of the semiconductor ring-laser operating regimes with special emphasis on the response to optical injection. Applications to an optical set/reset bistable memory and four-wave-mixing tunable THz signals generation are demonstrated.</p

    On N = 2 Truncations of IIB on T^{1,1}

    Get PDF
    We study the N=4 gauged supergravity theory which arises from the consistent truncation of IIB supergravity on the coset T^{1,1}. We analyze three N=2 subsectors and in particular we clarify the relationship between true superpotentials for gauged supergravity and certain fake superpotentials which have been widely used in the literature. We derive a superpotential for the general reduction of type I supergravity on T^{1,1} and this together with a certain solution generating symmetry is tantamount to a superpotential for the baryonic branch of the Klebanov-Strassler solution.Comment: 32 pages, v2:references adde

    Type IIA orientifold compactification on SU(2)-structure manifolds

    Full text link
    We investigate the effective theory of type IIA string theory on six-dimensional orientifold backgrounds with SU(2)-structure. We focus on the case of orientifolds with O6-planes, for which we compute the bosonic effective action in the supergravity approximation. For a generic SU(2)-structure background, we find that the low-energy effective theory is a gauged N=2 supergravity where moduli in both vector and hypermultiplets are charged. Since all these supergravities descend from a corresponding N=4 background, their scalar target space is always a quotient of a SU(1,1)/U(1) x SO(6,n)/SO(6)xSO(n) coset, and is therefore also very constrained.Comment: 31 pages; v2: local report number adde

    Moduli Stabilization and Cosmology of Type IIB on SU(2)-Structure Orientifolds

    Get PDF
    We consider type IIB flux compactifications on six-dimensional SU(2)-structure manifolds with O5- and O7-planes. These six-dimensional spaces allow not only for F_3 and H_3 fluxes but also for F_1 and F_5 fluxes. We derive the four-dimensional N=1 scalar potential for such compactifications and present one explicit example of a fully stabilized AdS vacuum with large volume and small string coupling. We then discuss cosmological aspects of these compactifications and derive several no-go theorems that forbid dS vacua and slow-roll inflation under certain conditions. We also study concrete examples of cosets and twisted tori and find that our no-go theorems forbid dS vacua and slow-roll inflation in all but one of them. For the latter we find a dS critical point with \epsilon numerically zero. However, the point has two tachyons and eta-parameter \eta \approx -3.1.Comment: 35 pages + appendices, LaTeX2e; v2: numerical dS extremum added, typos corrected, references adde

    A multiresolution approach to automated classification of protein subcellular location images

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fluorescence microscopy is widely used to determine the subcellular location of proteins. Efforts to determine location on a proteome-wide basis create a need for automated methods to analyze the resulting images. Over the past ten years, the feasibility of using machine learning methods to recognize all major subcellular location patterns has been convincingly demonstrated, using diverse feature sets and classifiers. On a well-studied data set of 2D HeLa single-cell images, the best performance to date, 91.5%, was obtained by including a set of multiresolution features. This demonstrates the value of multiresolution approaches to this important problem.</p> <p>Results</p> <p>We report here a novel approach for the classification of subcellular location patterns by classifying in multiresolution subspaces. Our system is able to work with any feature set and any classifier. It consists of multiresolution (MR) decomposition, followed by feature computation and classification in each MR subspace, yielding local decisions that are then combined into a global decision. With 26 texture features alone and a neural network classifier, we obtained an increase in accuracy on the 2D HeLa data set to 95.3%.</p> <p>Conclusion</p> <p>We demonstrate that the space-frequency localized information in the multiresolution subspaces adds significantly to the discriminative power of the system. Moreover, we show that a vastly reduced set of features is sufficient, consisting of our novel modified Haralick texture features. Our proposed system is general, allowing for any combinations of sets of features and any combination of classifiers.</p

    An incremental approach to automated protein localisation

    Get PDF
    Tscherepanow M, Jensen N, Kummert F. An incremental approach to automated protein localisation. BMC Bioinformatics. 2008;9(1): 445.Background: The subcellular localisation of proteins in intact living cells is an important means for gaining information about protein functions. Even dynamic processes can be captured, which can barely be predicted based on amino acid sequences. Besides increasing our knowledge about intracellular processes, this information facilitates the development of innovative therapies and new diagnostic methods. In order to perform such a localisation, the proteins under analysis are usually fused with a fluorescent protein. So, they can be observed by means of a fluorescence microscope and analysed. In recent years, several automated methods have been proposed for performing such analyses. Here, two different types of approaches can be distinguished: techniques which enable the recognition of a fixed set of protein locations and methods that identify new ones. To our knowledge, a combination of both approaches – i.e. a technique, which enables supervised learning using a known set of protein locations and is able to identify and incorporate new protein locations afterwards – has not been presented yet. Furthermore, associated problems, e.g. the recognition of cells to be analysed, have usually been neglected. Results: We introduce a novel approach to automated protein localisation in living cells. In contrast to well-known techniques, the protein localisation technique presented in this article aims at combining the two types of approaches described above: After an automatic identification of unknown protein locations, a potential user is enabled to incorporate them into the pre-trained system. An incremental neural network allows the classification of a fixed set of protein location as well as the detection, clustering and incorporation of additional patterns that occur during an experiment. Here, the proposed technique achieves promising results with respect to both tasks. In addition, the protein localisation procedure has been adapted to an existing cell recognition approach. Therefore, it is especially well-suited for high-throughput investigations where user interactions have to be avoided. Conclusion: We have shown that several aspects required for developing an automatic protein localisation technique – namely the recognition of cells, the classification of protein distribution patterns into a set of learnt protein locations, and the detection and learning of new locations – can be combined successfully. So, the proposed method constitutes a crucial step to render image-based protein localisation techniques amenable to large-scale experiments

    CNTN6 mutations are risk factors for abnormal auditory sensory perception in autism spectrum disorders

    Get PDF
    Contactin genes CNTN5 and CNTN6 code for neuronal cell adhesion molecules that promote neurite outgrowth in sensory-motor neuronal pathways. Mutations of CNTN5 and CNTN6 have previously been reported in individuals with autism spectrum disorders (ASDs), but very little is known on their prevalence and clinical impact. In this study, we identified CNTN5 and CNTN6 deleterious variants in individuals with ASD. Among the carriers, a girl with ASD and attention-deficit/hyperactivity disorder was carrying five copies of CNTN5. For CNTN6, both deletions (6/1534 ASD vs 1/8936 controls; P=0.00006) and private coding sequence variants (18/501 ASD vs 535/33480 controls; P=0.0005) were enriched in individuals with ASD. Among the rare CNTN6 variants, two deletions were transmitted by fathers diagnosed with ASD, one stop mutation CNTN6W923X was transmitted by a mother to her two sons with ASD and one variant CNTN6P770L was found de novo in a boy with ASD. Clinical investigations of the patients carrying CNTN5 or CNTN6 variants showed that they were hypersensitive to sounds (a condition called hyperacusis) and displayed changes in wave latency within the auditory pathway. These results reinforce the hypothesis of abnormal neuronal connectivity in the pathophysiology of ASD and shed new light on the genes that increase risk for abnormal sensory perception in ASD

    Toll-Like Receptor 3 (TLR3) Plays a Major Role in the Formation of Rabies Virus Negri Bodies

    Get PDF
    Human neurons express the innate immune response receptor, Toll-like receptor 3 (TLR3). TLR3 levels are increased in pathological conditions such as brain virus infection. Here, we further investigated the production, cellular localisation, and function of neuronal TLR3 during neuronotropic rabies virus (RABV) infection in human neuronal cells. Following RABV infection, TLR3 is not only present in endosomes, as observed in the absence of infection, but also in detergent-resistant perinuclear inclusion bodies. As well as TLR3, these inclusion bodies contain the viral genome and viral proteins (N and P, but not G). The size and composition of inclusion bodies and the absence of a surrounding membrane, as shown by electron microscopy, suggest they correspond to the previously described Negri Bodies (NBs). NBs are not formed in the absence of TLR3, and TLR3−/− mice—in which brain tissue was less severely infected—had a better survival rate than WT mice. These observations demonstrate that TLR3 is a major molecule involved in the spatial arrangement of RABV–induced NBs and viral replication. This study shows how viruses can exploit cellular proteins and compartmentalisation for their own benefit
    • 

    corecore