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1 Introduction

Starting with the work [1], the study of type IIB supergravity on the conifold has given rise

to much progress in gauge/gravity duality. In particular, it provides an example of a gravity

dual to a non-conformal, four dimensional field theory with minimal supersymmetry [2].

This background, known as the warped deformed conifold, can be used to model the local

geometry of a flux compactification [3]. In the current work, following [4, 5], we study the

gauged supergravity theory which arises from Kaluza-Klein reduction of IIB supergravity

on the coset T 1,1.

The Kaluza-Klein reduction of ten and eleven dimensional supergravity to lower di-

mensional gauged supergravity theories has a rich history. In particular there has been

much attention applied to the case of reduction on spheres down to maximally supersym-

metric gauged supergravity [6, 7]. Another route to deriving lower dimensional gauged

supergravity theories is to use a set of globally defined fundamental forms on the internal

manifold which close under exterior derivative and wedge product. This technique has been

used for nearly Kähler manifolds [8], cosets [4, 5, 9, 10], Sasaki-Einstein manifolds [11–15]

and also more general flux backgrounds in [16–18]. Additionally, recent progress has been

made exploring the fermion sector of these reductions [19–22].

The current work synthesizes aspects of the Kaluza-Klein reduction of IIB supergravity

on T 1,1 performed in [4, 5] that retains just the singlet sector under the global symmetries of

T 1,1. In fact similar reductions (restricted to just the scalar sector) were employed to derive

the warped deformed conifold solution [2, 23] (and used in many other scenarios as well [24–

29]), where a one-dimensional action was derived and a superpotential found from which

one can compute the scalar potential. This superpotential was then used to facilitate the

supersymmetry analysis and thus bypass using ten dimensional spinors directly. In more

recent work [4, 5], it was found that there exists a supersymmetric Kaluza-Klein reduction

on T 1,1 down to five dimensional N = 4 gauged supergravity (generalizing the work on

Sasaki-Einstein manifolds [12–15]) from which all these one dimensional models can be

obtained by additional reduction on R
1,3 and some further truncation of the fields.

The advantages of performing a rigorous supersymmetric reduction, thus including

higher form fields and not just the scalar sector, are manyfold. It allows for a simple

yet rigorous analysis of supersymmetric solutions, it allows one to consider solutions with

non-trivial profiles for form fields relevant for AdS/CMT [30, 31], and it also helps to

characterize which gauged supergravity theories can be obtained from string theory.

One goal of the current work is to develop the N = 2 five dimensional gauged su-

pergravity theories which are relevant for studying the physics of the warped deformed

conifold solution and its relatives. One such N = 2 theory is obtained by truncating to
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modes which are even under a particular Z2 symmetry I which will be explained in sec-

tion 4.1. Within this I invariant truncation there exists a superpotential WKS which has

been known for some time [25]. But as we will see, WKS is in fact a fake superpotential

even though the theory is supersymmetric. It was essentially noticed in [32] that fromWKS

one can derive a solution for fluxes on the warped deformed conifold which are known from

ten dimensional analysis [33] to be non-supersymmetric. The analysis we perform resolves

this seeming discrepancy since we can identify precisely how WKS fails to be a true super-

potential of the theory. We can then characterize which fluxes are in fact supersymmetric

on the warped deformed conifold.

While there have been superpotentials provided for the solution of [34, 35] and also [2],

it has been an open problem for some time to provide a superpotential for the interpolating

solution of [36]. In section 4.3 we study the sector of the N = 4 theory corresponding to

retaining just (gMN , φ, F3) which we will call the NS-sector truncation.1 Importantly, this

sector retains I-even and I-odd modes, and we derive a superpotential for this truncation.

Using the TST duality transformation of [37], from any solution of the NS-truncation

one can generate a family of solutions which lie within the N = 4 theory. As such, our

superpotential can be considered a superpotential for the baryonic branch of the warped

deformed conifold.

The organization of the rest of this paper is as follows. In the following section we

lay the ground work for the N = 4 reduction of IIB on T 1,1. In addition we analyze the

duality group of the N = 4 theory, notably finding the embedding of the SL(2,R) of IIB

supergravity within the N = 4 scalar coset. In section 3 we review some relevant material

on five-dimensional N = 2 gauged supergravity coupled to vector and hyper multiplets.

We also include a discussion on the existence of superpotentials, real and fake, and their

relation to solutions of the BPS domain wall equations. In section 4 we provide the rele-

vant details of three truncations of the N = 4 theory to N = 2 gauged supergravity. We

analyze the conditions imposed by supersymmetry and present superpotentials for each

truncation. Finally, in section 5 we conclude with some remarks on the pitfalls and advan-

tages of superpotential techniques. By studying a specific solution on the warped deformed

conifold we detail precisely the way in which solutions found from a fake superpotential can

end up being, in fact, non-supersymmetric. Additionally, we remark on potential future

work towards understanding relations between the current work and solution generating

techniques such as the TST transformation in string theory.

For sake of clarity we have relegated many important details of the N = 2 truncations

to appendices A, B and C. Specifically, for each truncation we include a detailed description

of the scalar coset manifolds and the coordinate transformations which lift the coset coor-

dinates to IIB supergravity fields. In addition we present the reduction of the IIB fermion

variations, which we find to be consistent with the scalar coset structure, as expected.

Finally, appendix D summarizes some differences in convention between the present work

and refs. [4, 22] concerning the T 1,1 reduction.

1We are abusing notation here since we keep F3 and not H3. But these are related by S-duality.

– 2 –
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2 N = 4 gauged supergravity from IIB on T 1,1

The consistent truncation of IIB supergravity on T 1,1 was performed in [4, 5], and the

resulting theory is described by gauged N = 4 supergravity in five dimensions coupled to

three vector multiplets. Since this is the starting point for the further N = 2 truncations,

we first review this construction, establish notation and derive the action of the IIB SL(2,R)

symmetry on the gauged supergravity theory.

The bosonic field content of IIB supergravity consists of the metric, IIB axi-dilaton

τ = a + ie−φ, three-forms F i
3 (i = 1, 2) and RR five-form F̃5. The ten dimensional metric

is reduced according to

ds210 = e2u3−2u1ds25 + e2u1+2u2E′

1E
′

1 + e2u1−2u2E′

2E
′

2 + e−6u3−2u1E5E5, (2.1)

where

E1 =
1√
6

(
σ1 + iσ2

)
, E2 =

1√
6

(
Σ1 + iΣ2

)
,

E′

1 = E1 , E′

2 = E2 + vE1,

E5 = g5 +A1, g5 =
1

3

(
σ3 +Σ3

)
,

(2.2)

and the SU(2)-invariant one forms satisfy dσi =
1
2ǫijkσj ∧σk and dΣi =

1
2ǫijkΣj ∧Σk. This

follows from writing T 1,1 as U(1) bundled over P1 × P
1. In particular, the U(1) structure

may be described by the invariant forms

J1 =
i

2
E1 ∧ Ē1, J2 =

i

2
E2 ∧ Ē2, Ω = E1 ∧ E2. (2.3)

The reduction of the metric yields three real five-dimensional scalars (u1, u2, u3), one com-

plex scalar v, and a U(1) gauge field A1 with field strength F2 = dA1.

We adopt a mixed notation with respect to [22] and [4] for the IIB forms which makes

the SL(2,R) invariance explicit. The differences in notation are summarized in appendix D.

For the three-forms, we expand the two form potentials as

Bi
2 = bi2 + bi1 ∧ E5 + ci0J+ + ei0J− + 2Re (bi0Ω), (2.4)

where J± = J1 ± J2, and write

F i
3 = dBi

2 + ji0J− ∧ E5, (2.5)

where ji0 are the charges coming from topological flux on the S3 ⊂ T 1,1. Explicitly, for the

three forms, we have

F i
3 = gi3+g

i
2∧E5+(gi1+h

i
1)∧J1+(gi1−hi1)∧J2+ji0J−∧E5+2Re [f i1∧Ω+f i0Ω∧E5], (2.6)

where

gi3 = dbi2 − bi1 ∧ F2, gi2 = dbi1, gi1 = dci0 − 2bi1 ≡ Dci0,

hi1 = dei0 − ji0A1 ≡ Dei0, f i1 = dbi0 − 3ibi0A1 ≡ Dbi0, f i0 = 3ibi0 .
(2.7)
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The three-forms contribute two SL(2,R) doublets of real scalars (ci0, e
i
0), one doublet

complex scalar bi0, one doublet of U(1) gauge fields bi1 with field strength gi2 = dbi1 and

one doublet two-form potential bi2. Alternatively, one may define the complex three-form

field strength
1√
τ2
G3 = viF

i
3 =

1√
τ2

(
F 2
3 − τF 1

3

)
, (2.8)

where we have introduced the SL(2,R) vielbein vi. However, we will always use a notation

that leaves the SL(2,R) structure explicit.

The five-form field strength can be expanded in the basis

F̃5 = (1 + ∗)[eZJ1 ∧ J2 ∧ E5 +K1 ∧ J1 ∧ J2 +K21 ∧ J1 ∧ E5

+K22 ∧ J2 ∧ E5 + 2Re (L2 ∧ Ω ∧ E5)].
(2.9)

The Bianchi identity dF̃5 =
1
2ǫijF

i
3 ∧ F j

3 yields the constraints

eZ = Q− 6iǫij(b
i
0
¯
bj0 − b̄i0b

j
0) + ǫij(j

i
0e

j
0 − jj0e

i
0) ,

K1 = Dk + 2ǫij [b
i
0

¯
Dbj0 + b̄i0Db

j
0]− ǫije

i
0h

j
1 ,

K21 = Dk11 +
1

4
ǫijg

i
1 ∧ gj1 +

1

2
ǫijg

i
1 ∧ hj1 ,

K22 = Dk12 +
1

4
ǫijg

i
1 ∧ gj1 −

1

2
ǫijg

i
1 ∧ hj1 , (2.10)

where the covariant derivatives are defined as

Dk = dk −QA1 − 2k11 − 2k12 − ǫijj
i
0e

j
0A1 ,

Dk11 = dk11 − ǫijj
i
0b

j
2 ,

Dk12 = dk12 + ǫijj
i
0b

j
2 . (2.11)

The charge Q comes from mobile D3-branes. The five-form contributes one real scalar k,

two one-forms (k11, k12) and a complex two-form L2.

In summary, the reduction of IIB supergravity on T 1,1 yields N = 4 supergravity

coupled to three vector multiplets. The scalar manifold is

Msc =
SO(5, nv)

SO(5)× SO(nv)
× SO(1, 1), (2.12)

with nv = 3. As shown in [4, 5], the SO(1, 1) is parameterized by u3, while the remaining

5× nv = 5× 3 scalars are

(u1, u2, c
i
0, e

i
0, k, τ, τ̄ , v, v̄, b

i
0, b̄

i
0). (2.13)

Along with the scalars, there are a total of nine-vectors: a singlet vector A1, along with

5 + nv = 8 additional vectors transforming in the vector representation of SO(5, nv). The

latter eight vectors correspond to the potentials

(bi1, k11, k12, b
i
2, L2, L̄2), (2.14)

where the two-form potentials bi2 and L2 are dual to vectors in five dimensions.

– 4 –
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2.1 Duality transformations

In ungauged supergravity with a scalar manifold given by a coset Ĝ/Ĥ, the duality group is

given by global Ĝ transformations. These transformations act on the coset on the right, say,

and are compensated by the left action of a local Ĥ transformation which brings the coset

element back to a canonical form. After gauging, only a subgroup of Ĝ transformations

remain symmetries of the theory. It is clear for N = 4 theories that the commutant of

the gauge group G in SO(5, nv) is a symmetry of the theory. But, in addition, there could

be further symmetries. There is currently no understanding in general of how large the

symmetry group is or how to compute it for a given gauged supergravity theory. To perform

an analysis of the duality group, the embedding tensor formalism (see e.g. [38]) is quite

useful since it facilitates the embedding of the gauge group into the scalar manifold in a

covariant way.

As reviewed above, the T 1,1 reduction yields N = 4 supergravity coupled to three

N = 4 vector multiplets, with the scalar manifold [4, 5]

Msc =
SO(5, 3)

SO(5)× SO(3)
× SO(1, 1). (2.15)

The field content combined with the embedding tensor [38] completely specify the N = 4

supergravity. In [4, 5] the embedding tensor (fMNP , ξMN ) was shown to be

f123 = −f128 = f137 = f178 = 2 ,

ξ23 = −ξ28 = ξ37 = ξ78 = −Q/
√
2 ,

ξ45 = −3
√
2 ,

ξ36 = ξ68 =
√
2 j20 ,

ξ26 = ξ67 =
√
2 j10 ,

(2.16)

and permutations. From this we find that the gauge group G is generated by

g0 = 2
√
3 t45 +

√
2Q (t37 + t78 + t23 − t28) +

√
2j20(t36 + t68) +

√
2j10(t26 + t67) ,

g1 = t13 − t18 ,

g2 = t12 − t17 ,

g3 = t37 + t78 + t23 − t28 , (2.17)

where

(tMN ) Q
P = δQ[MηN ]P (2.18)

are the standard generators of SO(5, 3) and η = diag{−1,−1,−1,−1,−1,+1,+1,+1}.
We find that the commutant of G inside SO(5, 3) is in general given by the following

two elements

t45 : v → eiβv, M0 → e−iβM0, N0 → e−iβN0 ,

t37 + t28 + t23 − t28 : k → k + β , (2.19)
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In addition there are two more elements

t26 + t67 : e10 → e10 + β, k → k + βe20 ,

t36 + t68 : e20 → e20 + β, k → k + βe10 (2.20)

generating symmetries which are broken by the terms in the scalar potential

Vsc ∼ j20e
1
0 − j10e

2
0. (2.21)

This is clearly not the full duality group since for example we at least expect to find

the action of the SL(2,R) symmetry of IIB supergravity. It turns out that this SL(2,R)

lives inside the normalizer of G in SO(5, 3). The normalizer is ten dimensional, but by

explicit computation we find that the only elements which are symmetries of the scalar

potential are the realization of the SL(2,R) symmetry of IIB supergravity. We find these

to be generated by

h = 2(t27 − t38) ,

e = t28 − t78 + t23 + t37 ,

f = t28 + t78 − t23 + t37 , (2.22)

satisfying [
e, f
]
= h,

[
h, e
]
= 2e,

[
h, f

]
= −2f . (2.23)

With general charges ji0, the whole symmetry is broken, but with j20 = 0 (j10 = 0) the

symmetry generated by e (f) survives as a symmetry of the scalar potential. When j10 = j20
the full SL(2,R) is a symmetry of the theory.

It is interesting that non-trivial duality symmetries are found outside the commutator

of the gauge group inside SO(5, 3). In ref. [39] the gauged supergravity was studied which

arises from compactification of IIB supergravity on the orbifold S5/Zn. There it was found

that the commutator of the gauge group G = SU(2)×U(1), inside SO(5, 2n) was SU(1, n).

This result is at odds with the discrete duality group found in [40] which does not quite fit

inside SU(1, n). It is expected that the discrete duality group is a symmetry of the dual

field theory at finite N and this should be enhanced to the continuous group in the limit of

large N . (See [41] for a derivation of this fact for N = 4 SYM in four dimensions.) What

we have found here is an example of duality symmetries which lie outside the commutator

of the gauge group inside SO(5, nv) and it would be interesting to explore if the duality

group found in [39] can be extended by considering the normalizer of the gauge group in

SO(5, 2n).

3 Preliminaries on N = 2 gauged supergravity

Before examining the various truncations of the N = 4 theory, we first review some of

the salient features of N = 2 gauged supergravity. In general, N = 2 supergravity may

be coupled to vector, tensor and hypermultiplets. However, we will not consider tensor

multiplets, as they will not appear in any of the truncations. As is well known, the bosonic

– 6 –
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field content of this theory consists of the metric gµν , nv+1 vectors AI
µ (with I = 0, . . . , nv),

nv vector multiplet scalars φx living on a very special manifold and 4nh hyperscalars qX

on a quaternionic manifold.

The bosonic N = 2 Lagrangian is

L = R− 1

2
gxyDµφ

xDµφy − 1

2
gXYDµq

XDµqY − V

−1

4
GIJF

I
µνF

J µν +
1

24
cIJKǫ

µνρλσF I
µνF

J
ρλA

K
σ , (3.1)

and the fermionic supersymmetry transformations are (for the gravitino, gauginos and

hyperinos)

δψµ i =

[
Dµ +

i

24
XI(γµ

νρ − 4δνµγ
ρ)FI νρ

]
ǫi +

i

6
XI(PI)i

jǫj ,

δλxi =

(
− i

2
γ ·Dφx − 1

4
gxy∂yX

IγµνFI µν

)
ǫi − gxy∂yX

I(PI)i
jǫj ,

δζA = f i AX

(
− i

2
γ ·DqX +

1

2
XIKX

I

)
ǫi . (3.2)

The covariant derivatives are

Dµφ
x = ∂µφ

x +AI
µK

x
I (φ

x) (3.3)

for the vector multiplet scalars and

Dµq
X = ∂µq

X +AI
µK

X
I (qX) (3.4)

for the hypermultiplet scalars, where we have fixed the gauge coupling g = 1. The Killing

vectors Kx
I (φ

x) and KX
I (qX) correspond to the gauging of the isometries of the very special

manifold and quaternionic manifold, respectively.

The vector multiplet scalars are given in terms of the nv +1 constrained scalars XI =

XI(φx) subject to the very special geometry constraint

1

6
cIJKX

IXJXK = 1. (3.5)

Additionally, the scalar metric for the vector multiplet scalars is determined by

GIJ = XIXJ − cIJKX
K ,

XI =
1

2
cIJKX

JXK ,

gxy = ∂xX
I∂yX

JGIJ . (3.6)

The Killing prepotentials (PI)
j
i = P r

I (iσ
r) j

i are determined by the Killing vectors and

depend only on the hyperscalars. They satisfy

ιKI
Ωr = dP r

I + ǫrstωsP t
I , (3.7)

– 7 –
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where ωs is the SU(2) connection, or in co-ordinates

KX
I Ωr

XY = ∇Y P
r
I . (3.8)

Here Ωr are the triplet of covariantly constant two-forms on the quaternion manifold.

While this is a differential equation for the Killing prepotentials, one can solve for them

algebraically by using the fact [42] that P r
I are eigenfunctions of the Laplacian

∇X∇XP
r
I = −4nhP

r
I . (3.9)

We then see that

P r
I = − 1

4nh
∇X
(
KY

ΛΩr
XY

)
(3.10)

is a solution to (3.8). Note that the Killing prepotentials are unique only up to a local SU(2)

gauge transformation. Finally, the scalar potential couples the hypermultiplet scalars to

the vector multiplet scalars and is given by

V = 2gxy∂xX
I∂yX

JP r
I P

r
J − 4

3
P rP r +

1

2
gXYK

XKY , (3.11)

where P r = XIP r
I . For convenience, we will often denote P r as an SU(2) vector, namely

~P = (P 1, P 2, P 3).

3.1 Real and fake N = 2 superpotentials

As we will discuss in the following subsection, the construction of BPS solutions to gauged

supergravity is often based on solving first order equations constructed from the N = 2

superpotential. In the absence of hypermatter, where a rigid U(1) is gauged in SU(2),

the Killing prepotentials are all aligned, say in the r = 3 direction. In this case, the

superpotential is given by W = XIP 3
I , and the scalar potential is determined in the usual

manner by

V = 2gxy∂xW∂yW − 4

3
W 2 , (3.12)

in perfect agreement with (3.11)

It is often assumed that a superpotential will continue to exist when hypermatter is

included. However, comparing the actual potential (3.11) with the expression (3.12) indi-

cates a couple of differences. Firstly, the gauging of isometries of the quaternion manifold

gives rise to an additional contribution 1
2gXYK

XKY to the potential. Secondly, the first

term of (3.11) only agrees with the first term of (3.12) for rigid P r
I , since W was ob-

tained by aligning P r
I along r = 3. Nevertheless, it is possible to come close by defining a

superpotential [43]

W =
√
P rP r . (3.13)

and using the relation

V = 2gΛΣ∂ΛW∂ΣW − 4

3
W 2 , (3.14)

where Λ,Σ run over both vector multiplet and hypermultiplet scalars. But in order for this

relation to work, a further constraint on the phase of P r must hold off-shell:

∂xQ
r = 0 , (3.15)

– 8 –
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where

P r =WQr . (3.16)

This condition is essentially a requirement that any U(1) component that is being gauged

inside SU(2) must be rigid as a function of the vector multiplet scalars. This condition will

hold if, e.g., the gauging of SU(2) is aligned with r = 3. However, this is a special case, and

we will find explicit examples below where this constraint is in fact not satisfied off-shell.

Even when a particular gauging does not admit a superpotential, in some cases it is

nevertheless possible to find a fake superpotential that reproduces the correct scalar po-

tential using the relation (3.14). In this case, one can still write down first order equations

for domain wall solutions. However, there is no guarantee that such solutions are actually

supersymmetric; only examination of the true Killing spinor equations obtained from (3.2)

will indicate whether the BPS conditions are satisfied or not. In practice, most solutions

obtained in this fashion are supersymmetric. However, we are not aware of a general prin-

ciple governing the existence of a fake superpotential nor determining when the resulting

solution is supersymmetric.

An alternate approach to obtaining BPS solutions in the absence of a true superpoten-

tial is to nevertheless use the square-root superpotential (3.13) to derive a set of first order

equations. In general, the result of solving this system may not satisfy the true equations of

motion. However, once we impose the constraint (3.15), the background is then guaranteed

to be a solution to the equations of motion as well as BPS. In fact, all BPS domain wall

solutions may be obtained in this fashion. We explore this in a bit more detail below.

3.2 BPS domain-wall equations

A particularly interesting class of solutions in gauged supergravity are BPS domain walls.

The domain wall ansatz is given by the five-dimensional metric

ds25 = dr2 + a(r)2ηµνdx
µdxν , (3.17)

and is supported by scalar fields that depend only on r. The vector fields vanish because of

the isometry. Given this ansatz, it was shown in [43] that the BPS equations are given by

1

a

da(r)

dr
= ±1

3
W , (3.18)

dφΛ

dr
= ∓2gΛΣ∂ΣW , (3.19)

∂xQ
r = 0 . (3.20)

The curious equation here is (3.20) which is not a standard BPS flow equation but is

equivalent to the constraint encountered above in (3.15).

It is worthwhile to formally analyze the constraint (3.20) a little further. Recalling

that ~Q = ~P/|~P |, we find that this constraint is equivalent to

~P × (~P × ∂x ~P ) = 0 ⇒ ~P × ∂x ~P = 0 . (3.21)
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Moreover multiplying this expression by GIK∂xX
K and using the special geometry rela-

tion [44]

GIK∂
xXK∂xX

J = δI
J −XIX

J , (3.22)

we see that

0 = GIK∂
xXK ~P × ∂x ~P = ~P × ~PI , (3.23)

As a result, the constraint implies that

~P × ~PI = 0. (3.24)

We now conclude that the only way to satisfy (3.20) is to have ~P identically zero or to have

every nonzero ~PI lie along the same direction in SU(2), with possibly an arbitrary number

of the ~PI vanishing. An equivalent statement is to say that all cross products between any

two prepotentials must vanish
~PI × ~PJ = 0 . (3.25)

This demonstrates that the square-root superpotential (3.13) can be used to obtain BPS

domain wall solutions when combined with the constraint that all prepotentials are parallel

in SU(2) space. This constraint was observed in [43] at fixed points of the domain wall

flow. However, here we have shown that the parallel constraint must hold along all points

of the supersymmetric flow. Additionally, this constraint was discussed in [45], however it

was not recognized as a necessary condition of the BPS equations.

4 The truncations to N = 2 gauged supergravity

It is generally useful to restrict our attention to N = 2 subsectors of the full theory

when looking for BPS solutions. This is because we may then apply the well-studied

flow equations (3.18) and (3.19) along with all its associated machinery. Starting from

N = 4 supergravity coupled to three vector multiplets, the truncation to N = 2 proceeds

by removing the massive N = 2 gravitino multiplet. Since the N = 4 gravity multiplet

reduces to a gravity multiplet coupled to a gravitino and a vector multiplet, and each

N = 4 vector reduces to a vector multiplet and a hypermultiplet, the decomposition gives

four vector multiplets and three hypermultiplets. However, the massive gravitino multiplet

will eat two vector multiplets, so upon truncation we are limited to at most two vector

multiplets and three hypermultiplets [5].

Compared to the reduction on a generic Sasaki-Einstein manifold, the reduction on

T 1,1 yields one additional N = 4 vector multiplet, denoted the Betti vector multiplet

in [5]. Furthermore, ref. [5] considered two truncations to N = 2. The first retains the

N = 2 Betti hypermultiplet, and gives rise to a total of one vector multiplet and three

hypermultiplets, with field content

Betti-hyper truncation

gravity + vector: (gµν ;A1, k11 + k22;u3) ,

3 hypers: (u1, k, e
i
0, τ, τ̄ , b

i
0, b̄

i
0, v, v̄) . (4.1)

– 10 –



J
H
E
P
0
7
(
2
0
1
2
)
0
9
8

The second truncation retains the N = 2 Betti vector multiplet, and yields two vector

multiplets and two hypermultiplets

Betti-vector truncation

gravity + 2 vectors: (gµν ;A1, k11, k12;u2, u3) ,

2 hypers: (u1, k, τ, τ̄ , b
i
0, b̄

i
0) . (4.2)

We will examine both of these truncations below.

Of course, it is possible to further truncate away the entire Betti multiplet, leaving the

universal N = 2 Sasaki-Einstein system

Sasaki-Einstein truncation

gravity + vector: (gµν ;A1, k11 + k12;u3) ,

2 hypers: (u1, k, τ, τ̄ , b
i
0, b̄

i
0) . (4.3)

If desired, the universal hypermultiplet may be truncated away, leaving

Massive vector truncation

gravity + vector: (gµν ;A1, k11 + k12;u3) ,

2 hypers: (u1, k, b
m2=21
0 , b̄m

2=21
0 ) . (4.4)

Alternatively, we may also keep only the universal hypermultiplet

Universal hyper truncation

gravity: (gµν ;A1 +
1

3
(k11 + k12)) ,

hyper: (τ, τ̄ , bm
2=−3

0 , b̄m
2=−3

0 ) . (4.5)

Finally, all matter may be removed, leaving pure N = 2 supergravity

Pure sugra truncation

gravity: (gµν ;A1 +
1

3
(k11 + k12)) . (4.6)

In addition to the above family of truncations, it is possible to truncate IIB super-

gravity to the NSNS sector before reducing. Equivalently, we keep only fields arising from

(gMN , φ, F3), where we have considered an S-duality rotated basis for convenience in relat-

ing our results to the conifold. The resulting NS truncation retains two vector multiplets

and two hypermultiplets

NS truncation

gravity + 2 vectors: (gµν ;A1, b
2
1, b

2
2;φ+ 4u1, u3) ,

2 hypers: (φ− 4u1, u2, c
2
0, e

2
0, b

2
0, b̄

2
0, v, v̄) . (4.7)

As we show below, this is distinct from the Betti-vector truncation, even though they both

result in two vector multiplets and two hypermultiplets. The NS truncation is related to

the baryonic branch of Klebanov-Strassler through a TST transformation [37].
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In the following sub-sections we present the details of the Betti-hyper, Betti-vector and

the NS truncations. The theories are determined by the geometry of the special Kähler

and quaternionic scalar coset manifolds. Along with some background information on the

truncations, we provide only the particular Killing vectors which are gauged in each model

as well as the form of the prepotentials. This is the most relevant information necessary to

construct the superpotential and discuss the BPS flow equations. Additional information

for each truncation will be relegated to the appendices. For completeness, we present the

reduction of the IIB fermion supersymmetry variations in the appendices as well. As a

consistency check we have verified that the Killing vectors and prepotentials determined

from the coset and the fermion reductions are in agreement.

4.1 Betti-hyper truncation

We first consider the Betti-hyper truncation, which includes what is known as the Betti-

hypermultiplet [5]. In total, it contains three N = 2 hypermultiplets and one vector

multiplet. This field space has a critical point corresponding to the Klebanov-Strassler

solution and thus this truncation is of particular interest. The supergravity theory is

known to admit a superpotential [22, 25], but as we will discuss, this is not in fact a

genuine superpotential but rather a fake superpotential.

The field content of the Betti-Hyper truncation is obtained from the N = 4 theory by

restricting to the modes which are invariant under the I symmetry:

I = Ωp · (−1)FL · σ , (4.8)

where

Ωp · (−1)FL : (g, φ,B(2), C(0), C(2), C(4)) → (g, φ,−B(2), C(0),−C(2), C(4)) ,

σ : (J+, , J−,ΩR,ΩI) → (J+, ,−J−,−ΩR,−ΩI) . (4.9)

The surviving field content is given in (4.1), and additional details of the truncation are

presented in appendix A.

4.1.1 Killing vectors

The Killing vectors, which can be read off from the covariant derivatives in section 2 or

from the supersymmetry variations in appendix A, are

K0 = −(Q+ ǫijj
i
0e

j
0)∂k − (3ibi0∂bi0

+ c.c) +

(
3

2
(1 + ρ2)∂ρ + c.c.

)
− ji0∂ei0

,

K1 = 4∂k . (4.10)

The corresponding Killing prepotentials can be obtained either from the gravitino

variation (A.27) or by explicitly constructing the SU(2)-connection ωr and the triplet of

two-forms Ωr on the hypermultiplet moduli space and then using (3.10). In principle these

two methods should only agree up to a local SU(2) transformation, but in fact we found
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them to agree precisely:

P0 = −i
[(

3

2ρ2
(1 + |ρ|2)− 1

2
e−4u1eZ

)
σ3

− i

2ρ
e−2u1vi((ρ̄− i)2f̄ i0 − (ρ̄+ i)2f i0 + i(1− iρ̄)(1 + iρ̄)ji0)σ+

+
i

2ρ
e−2u1 v̄i((ρ+ i)2f i0 − (ρ− i)2f̄ i0 − i(1 + iρ)(1− iρ)ji0)σ−

]
,

P1 = −2ie−4u1σ3 . (4.11)

Note that P+
I = (P−

I ).

4.1.2 The superpotential

Much of the motivation of the current work is to understand the origin in gauged super-

gravity of the superpotential first written down in [25]:

WKS = −1

2
e−4u1+4u3eZ + 2e−4u1−2u3 +

3

2ρ
(1 + |ρ|2)e4u3 . (4.12)

Due to the particular form of the Killing prepotentials, namely that P 1
1 = P 2

1 = 0,

the only non-trivial way to solve the algebraic prepotential constraint (3.25) is to set also

P 1
0 = P 2

0 = 0. This amounts to the condition

3
(1 + iρ̄)

(1− iρ̄)
vib

i
0 + 3

(1− iρ̄)

(1 + iρ̄)
vib̄

i
0 = vij

i
0 . (4.13)

Evaluated on this constraint, one finds

√
P rP r|∂xQr=0 = P 3|∂xQr=0 , (4.14)

and thus the scalar potential can be obtained from the superpotential using the simple po-

tential from superpotential relation (3.14), so long as all quantities are subject to the con-

straint P 1
0 = P 2

0 = 0. What is particular interesting in this model is the non-trivial fact that

WKS = P 3 (4.15)

recreates the scalar potential using (3.14), even without imposing any constraints. As a

result, P 3 plays the even more powerful role of a fake superpotential for this truncation.

In fact, nonsupersymmetric solutions of the KS system have been studied in [32];

in their analysis certain solutions to the “BPS” equations from the superpotential were

shown to correspond to (3, 0) flux on the deformed conifold, which is known to be non-

supersymmetric. From our analysis we can directly check that these non-supersymmetric

solutions do not satisfy the constraint (4.13). Therefore they do not satisfy the true BPS

equations and are explicitly non-supersymmetric. We will elaborate on this point in sec-

tion 5.1.
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4.2 Betti-vector truncation

We now turn to the Betti-vector truncation. Compared to the universal Sasaki-Einstein

truncation, this keeps an additional N = 2 vector multiplet as opposed to the additional

hypermultiplet of the Betti-hyper truncation, for a total of two hypermultiplets and two

vector multiplets. Details of this truncation are given in appendix B. In particular, we

have the following three Killing vectors

K0 = −(3ibi0∂bi0
+ c.c.)−Q∂k ,

K1 = 2∂k ,

K2 = 2∂k , (4.16)

and the prepotentials

P0 = −i
[(

3− 1

2
e−4u1eZ

)
σ3 − 2ie−2u1vif

i
0σ+ + 2ie−2u1 v̄if̄

i
0σ−

]
,

P1 = −ie−4u1σ3 ,

P2 = −ie−4u1σ3 . (4.17)

Similar to the Betti-hyper truncation, the prepotentials (P1, P2) are particularly simple.

This again appears to be the key to constructing a fake superpotential from the P 3 term.

From P r ≡ XIP r
I , where X

I are given by

X0 = e4u3 , X1 = e2u2−2u3 , X2 = e−2u2−2u3 , (4.18)

we find

WBV = −1

2
e−4u1+4u3eZ + e−4u1−2u2−2u3 + e−4u1+2u2−2u3 + 3e4u3 .

As in the Betti-hyper truncation this superpotential acts as a fake superpotential.

However, to our knowledge, the solution space of this has not been analyzed. Of course,

the fake superpotential must be supplemented with the prepotential constraint (3.25),

which in this case takes on the particularly simple form

vif
i
0 = 0 , (4.19)

and which is equivalent to two real constraints.

4.3 NS-sector truncation

We now consider the NS-sector truncation. This particular truncation on T 1,1 has not been

previously worked out explicitly. However, its consistency is obvious from ten dimensions.

We set the RR axion, the five-form and, for simplicity, the NSNS-three form to zero.2

The resulting field content is listed in (4.7), and the details of the truncation are given in

appendix C.

In [37] this sector was shown to be related via a TST transformation to the baryonic

branch of the Klebanov-Strassler theory. In the following we determine a superpotential

for this sector which in essence is then a superpotential on the baryonic branch. However,

we note that a fake superpotential in this sector has not been found.

2By S-duality this is related to a setup where only the NSNS-fields are non-vanishing.
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4.3.1 Killing vectors

Again, the Killing vectors can be determined from either the covariant derivatives in sec-

tion 2 or the fermion variations in appendix C. They are

K0 = −(3ib0∂b0 + c.c.) + (3iv∂v + c.c.)− P∂e0 ,

K1 = 2∂c0 ,

K2 = 0 . (4.20)

The prepotentials, which can be computed from these Killing vectors on the scalar

manifold or simply read off from the gravitino variation (C.25), are

P0 = −i
[(

3− 1

2
eφ/2−2u1(e−2u2((1 + |v|2)j20 + 2ivf0 − 2iv̄f̄0)− e2u2P )

)
σ3

−
(
3v̄ + 2ieφ/2−2u1

(
f0 −

i

2
v̄P

))
σ+ −

(
3v − 2ieφ/2−2u1

(
f̄0 +

i

2
vP

))
σ−

]
,

P1 = −i
[
eφ/2−2u1(e−2u2(1− |v|2) + e2u2)σ3 − 2v̄eφ/2−2u1σ+ − 2veφ/2−2u1σ−

]
,

P2 = 0 , (4.21)

where in the above, and for the remainder of this section, we have suppressed the upper

SL(2,R) index on the fields from the RR three-form and have set j20 = P .

4.3.2 The superpotential

Curiously, we were not able to find a fake superpotential in this sector. This seems to

be related to the fact that P0 and P1 are both non-trivial in all three components and

so there is no natural SU(2) direction for the prepotentials to lie. This is in contrast to

the previous two truncations, which naturally fell into the 3-direction. One could argue

that these prepotentials can be rotated by an SU(2) transformation into the same form

as in (4.11). However, due to the nontrivial dependence of P1 on the hyper-scalars this

rotation is field dependent and does not yield a suitable fake superpotential. The key to

constructing a fake superpotential from prepotentials seems to be related to the fact that

theories which admit such a fake superpotential admit a rigid rotation of all non-trivial

prepotentials into one direction. However, a rigorous demonstration of this statement has

not been established.

Nevertheless, we may find the closest possibility for a superpotential in this sec-

tor by computing W =
√
P rP r and explicitly imposing the algebraic prepotential con-

straints (3.25) off-shell. In this case we find two independent constraints on the fields.

The first is

Im (vb0) = 0, (4.22)

which can be solved by setting

b0 = αv̄, (4.23)

where α is a real function. The second constraint is more complicated and the detailed

form is not illuminating. It however fixes the coefficient α to be such that

b0 =

(
2P + 3e2u1−2u2−φ/2(1− |v|2 − e4u2)

)

6(1 + |v|2 + e4u2)
v̄. (4.24)
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Once this identification has been made, the superpotential defined by

W =
√
~P · ~P , (4.25)

can be used in the standard fashion and becomes

W =

√
1 +

1

4
e−4u2(1− |v|2 − e4u2)2

×
[
2e−4u1−2u3 − Peφ/2−2u1+4u3

(
1− |v|2 − e4u2

1 + |v|2 + e4u2

)
+ 6e4u3−2u2

( |v|2 + e4u2

1 + |v|2 + e4u2

)]
.

(4.26)

It can be checked that once the constraint (4.24) is imposed, this expression for W gives

the potential, which is also subject to (4.24), through the standard potential from super-

potential relation (3.14). A version of this superpotential, as well as the constraint (4.24),

has been previously derived in [46] in the context of a string dual to N = 1 SQCD.3

In [46], Hamilton-Jacobi techniques are used to derive the superpotential in an effective

one-dimensional scalar theory. This is somewhat different in philosophy to our analysis,

where (4.26) is highlighted as a true superpotential within a genuine five-dimensional su-

pergravity.

Note that the NS truncation includes the Maldacena-Nunez solution [35]. In fact,

substituting in the ansatz for the IIB fields, the expression (4.26) reproduces the superpo-

tential shown in [25]. Moreover, we can verify that the more generic ansatz of [37] obeys

the BPS flow equations derived from this superpotential. Therefore, via the TST trans-

formation detailed in [37], this superpotential in fact describes the baryonic branch of the

Klebanov-Strassler theory.

5 Discussion

The coset reduction of IIB supergravity on T 1,1 naturally yields five-dimensional gauged

N = 4 supergravity. We have analyzed three particular N = 2 truncations of this reduction

that are relevant to the conifold solution and its relatives. In particular, we have highlighted

the difference between fake and real superpotentials and demonstrated the importance of

the prepotential constraint (3.25) as a necessary condition for the supersymmetry of the

solutions.

5.1 Fake superpotentials and the warped deformed conifold

There is a particularly relevant class of solutions within the Betti-hyper truncation which

correspond to taking the ten-dimensional IIB background to be a warped product of R1,3

and the Ricci-flat metric on the deformed conifold. We can solve this system explicitly

using the fake superpotential (4.12). In particular, this amounts to specifying the fields

coming from the metric to take the form of the deformed conifold metric and solving the

flow equations with the fake superpotential (4.12). This is a particularly nice example to

3We would like to thank I. Papadimitriou calling [46] to our attention.
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study in the context of fake superpotentials as there exists a known non-supersymmetric

solution to the flow equations derived from (4.12), found in [32].

In order to make the connection with previous solutions as transparent as possible we

define the flux of the NS and RR three forms to be j10 = R and j20 = P , respectively, and

make the following KS-like parametrization for the other scalars in the three forms:

b10 = −R
3

(
F̃ − 1

2

)
− i

P

6
(fKS − kKS), e10 =

P

3
(fKS + kKS),

b20 = −P
3

(
FKS − 1

2

)
+ i

R

6
(f̃ − k̃), e20 = −R

3
(f̃ + k̃).

(5.1)

The functions fKS , kKS , and FKS are the standard functions in the KS ansatz, and the

tilde-ed functions f̃ , k̃, and F̃ are their S-dual analogs. Assuming a vanishing axion, a = 0,

the equations reduce to two decoupled systems for {fKS , kKS , FKS} and {f̃ , k̃, F̃} and the

solution is given by [32]:

fKS(t) =
(−t coth t+ 1)

2 sinh t
(−1 + cosh t)

+C1

(
−t+ 1

2
sinh t+

t

2(1 + cosh t)
+

1

2
tanh

t

2

)
− C2

1 + cosh t
+ C3,

kKS(t) =
(−t coth t+ 1)

2 sinh t
(1 + cosh t)

+C1

(
−t− 1

2
sinh t− t

2(−1 + cosh t)
+

1

2
coth

t

2

)
− C2

1− cosh t
+ C3,

FKS(t) =
1

2
− t

2 sinh t
+

1

2
C1

(
cosh t− t

sinh t

)
+

C2

sinh t
, (5.2)

where C1, C2, and C3 are integration constants. Additionally, the solution for the tilde-ed

functions is exactly the same, but with different integration constants C̃1, C̃2, and C̃3.

The solution to the “KS” system (i.e. with R = 0) has already been solved in [32],

yielding the above solution. The only non-singular solution in this sector is with C1 =

C2 = C3 = 0 which reduces exactly to the Klebanov-Strassler solution. In [32], it was

also noted that the solution with C1 = 1 and C2 = C3 = 0 corresponds to a background

with (0, 3)-flux which breaks supersymmetry by arguments from string theory [33]. In

the present context we can verify explicitly that this solution is not supersymmetric by

evaluating the two constraints P 1
0 = 0 and P 2

0 = 0. The explicit form of the constraints is

not important. However we find that P 1
0 ∝ C̃1 and P 2

0 ∝ C1. This means that solutions

with C1 or C̃1 non-vanishing are not supersymmetric. In particular, we see that the non-

supersymmetric solution found in [32] is due to the superpotential (4.12) being a fake

superpotential. In this case, solving the first order flow equations is insufficient in itself

in guaranteeing supersymmetry, and the algebraic prepotential conditions must also be

checked.

In fact, there is a subtlety in obtaining non-supersymmetric solutions using the fake

superpotential. Ordinarily, solving the first order BPS equations will ensure a solution to

the bosonic equations of motion. However, if the prepotential conditions are not satisfied,
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there is at least a possibility that the system may not solve the full set of equations of

motion. In the present case, there would be a concern that the fluxes j10 = R and j20 = P

along with non-trivial scalar profiles for ei0 as well as the complex charged scalars bi0 may

source the graviphoton A1. However, we have checked that the source for A1 vanishes

regardless of the choice of integration constants Ci and C̃i. Hence the solution is valid in

both the supersymmetric and non-supersymmetric cases.

Note that since both F3 and H3 are nonzero, the five-form is sourced so that in addition

to the flux term in the original KS solution, which is encoded in eZ , the scalar k is, in

general, non-zero as well. The explicit form of k is not so illuminating. However it vanishes

for the non-singular solution when all integration constants are set to zero.

The notion of non-supersymmetric flux on warped Calabi-Yau backgrounds has been

generalized in [47] to include SU(3)×SU(3) structure backgrounds. It would be interesting

to connect those ideas to the existence of a fake superpotential in five dimensions for some

more general truncation than those considered in this work.

5.2 Superpotential for the baryonic branch of the warped deformed conifold

One distinguishing feature of the baryonic branch of the warped deformed conifold is that

away from the origin it breaks the Z2 symmetry which we call I. The NS truncation we

considered includes Z2 odd and even modes and within this theory there is a line of half-

BPS solutions [36]. A very neat observation of [37] is that one can perform a certain TST

transformation on this family of solutions and connect it to the family which is dual to the

baryonic branch of the warped deformed conifold. Physically this latter solution space is

more interesting since the whole family is dual to quantum field theory.

In principle it is possible to make a five dimensional domain wall ansatz and then

perform the TST transformation on the full theory off-shell. This is quite an unwieldy

operation, but it would interesting to work out a way to characterize this transformation

covariantly in terms of the scalar cosets of the NS truncation.

One motivation for uncovering a superpotential for the baryonic branch is to study

perturbation of the warped deformed conifold along the lines of [28, 29]. For those works the

superpotential used only included Z2-even modes. But using the superpotential computed

in this work, it should be possible to include Z2-odd modes in the NS sector and then use

the TST transformation to map them to genuine perturbations of the warped deformed

conifold.
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A Details of the Betti-hyper truncation

Here we present some additional details of the Betti-hyper truncation. This truncation

gives rise to N = 2 gauged supergravity coupled to one vector multiplet and three hyper-

multiplets. The bosonic fields in the gravity and vector multiplet are (gµν ;A1, k11+k22;u3),

and the 12 scalars in the hypermultiplet are (u1, k, e
i
0, τ, τ̄ , b

i
0, b̄

i
0, v, v̄).

A.1 Bosonic sector

The full Lagrangian is

L = Lgr + Lhyp + Lvec + Lg,kin + LCS + Lpot, (A.1)

where the individual components are given below.

A.1.1 Hypermultiplet sector

The hypermultplet kinetic terms are

Lhyp = −e−4u1Mij

[
1

2
e−4u2 ĝi11 ∧ ∗ĝj11 +

1

2
e4u2 ĝi12 ∧ ∗ĝj12 + 2(f̂ i1 ∧ ∗ ˆ̄f j1 + ˆ̄f i1 ∧ ∗f̂ j1 )

]

−8du1 ∧ ∗du1 − 4du2 ∧ ∗du2 − 12du3 ∧ ∗du3 − e−4u2(d|v| ∧ ∗d|v|+ |v|2Dθ ∧ ∗Dθ)
−1

2
e−8u1K1 ∧ ∗K1 −

1

2
dφ ∧ ∗dφ− 1

2
e2φda ∧ ∗da, (A.2)

with the relation

e2u2 =
1

cosh y
, |v| = tanh y , (A.3)

where

ĝi11 = De0,

ĝi12 = (1 + |v|2)Dei0 − 4Im (vDbi0),

f̂ i1 = Dbi0 −
i

2
vDei0,

Dei0 = dei0 − ji0A1,

Dbi0 = dbi0 − 3ibi0A1,

Dθ = dθ + 3A1, (A.4)

and

M = eφ

(
a2 + e−2φ −a

−a 1

)
. (A.5)

Following [48], the generators of the solvable subalgebra of SO(4, 3) may be taken as

H1 = e11 − e55 , H2 = e22 − e66 , H3 = e33 − e77 ,

E 2
1 = −e21 + e56 , E 3

1 = −e31 + e57 , E 3
2 = −e32 + e67 ,

V 12 = e16 − e25 , V 13 = e17 − e35 , V 23 = e27 − e36 ,

U1
1 = e14 + e45 , U2

1 = e24 + e46 , U3
1 = e34 + e47 .

(A.6)
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Using these, the metric on the hyperscalar coset is

− 1

8
TrdM ∧ ∗dM−1 =

1

4

(
dφ21 + dφ22 + dφ23

)

+
1

2
e−φ1+φ2dx24 +

1

2
eφ3−φ1

(
dx5 + x4dx6

)2
+

1

2
e−φ2+φ3dx26

+
1

2
eφ1+φ2

(
dx7 + x10dx11

)2
+

1

2
eφ1+φ3

(
dx8 − x6dx7 + x10(dx12 − x6dx11)

)2

+
1

2
eφ2+φ3

(
dx9 − x4dx8 + (x5 + x4x6)(dx7 + x10dx11) + (x11 − x4x10)dx12

)2

+
1

2
eφ1dx210 +

1

2
eφ2
(
dx11 − x4dx10

)2
+

1

2
eφ3
(
dx12 − x5dx10 − x6dx11

)2
,

(A.7)

where

M = LTL, (A.8)

and

L = e
φ1
2
H1 ·e

φ2
2
H2 ·e

φ3
2
H3 ·ex4E 2

1 ·ex5E 3
1 ·ex6E 3

2 ·ex7V12 ·ex8V13 ·ex9V23 ·ex10U1
1 ·ex11U1

2 ·ex12U1
3 .

(A.9)

The supergravity fields and the coset fields are related by the coordinate transforma-

tions

φ1 = 2x− 2πi ,

φ2 = −4u1 − φ ,

φ3 = −4u1 + φ ,

x4 = e10 + 2b10i ,

x5 = e20 − ae10 + 2b20i ,

x6 = a ,

x7 = e10(1− χ2)− 2b10i(1 + χ2) ,

x8 = e20(1− χ2)− 2b20i(1 + χ2) ,

x9 = k − 4b10rb
2
0r − 2(e10b

2
0i − e20b

1
0i) + 4χb10r(e

2
0 + 2b20i)− χ2(e10 + 2b10i)(e

2
0 + 2b20i) ,

x10 =
√
2χ ,

x11 =
√
2
(
− 2b10r + χ(e10 + 2b10i)

)
.

x12 =
√
2
(
− 2b20r + χ(e20 + 2b20i)

)
. (A.10)

In these coordinates, we note that

ρ = χ+ ie−x (A.11)

is an SL(2,R) factor within the coset which descends from the scalar v by the identification

v = −(i− ρ)(i− ρ̄)

1 + |ρ|2 . (A.12)
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A.1.2 Vector multiplet sector

The vector multiplet kinetic terms and Chern-Simons terms are

Lvec = −12du3 ∧ ∗du3, (A.13)

Lg,kin = −1

2
e−8u3F2 ∧ ∗F2 − e4u3K2 ∧ ∗K2, (A.14)

LCS = −A ∧K2 ∧K2. (A.15)

This and the supersymmetry variations lead to the identification of the constrained

scalars as

X0 = e4u3 , X1 = e−2u3 , (A.16)

with c011 = 2. The field strengths are given by

F 0 = F2, F 1 = −K2. (A.17)

A.1.3 Scalar potential

The scalar potential has several contributions which we distinguish for clarity:

Lpot = −
(
Vgr + VF(3)

+ VF(5)

)
, (A.18)

Vgr = −12e−4u1−2u2+2u3
(
1 + |v|2 + e4u2

)
+ 9|v|2e−4u2+8u3

+2e−8u1−4u3
(
e4u2 + e−4u2(1− |v|2)2 + 2|v|2

)
, (A.19)

VF(3)
=

1

2
e−4u1+8u3Mij

(
e−4u2 ĵi01ĵ

j
01 + e4u2 ĵi02ĵ

j
02 + 2(f̂ i0

ˆ̄f j0 + ˆ̄f i0f̂
j
0 )
)
, (A.20)

VF(5)
=

1

2
e2Ze−8u1+8u3 , (A.21)

where

e4u2 = 1− |v|2,
ĵi01 = (1 + |v|2)ji0 − 4Im (f i0v),

ĵi02 = −ji0,

f̂ i0 = f i0 −
i

2
ji0v,

eZ = Q− 2i

3
ǫij(f

i
0f̄

j
0 − f̄ i0f

j
0 ) + ǫij(j

i
0e

j
0 − jj0e

i
0). (A.22)

A.2 Fermion variations

The supersymmetry variations of the KS-sector have been worked out in [22], where the

fermions were organized according to mass eigenstates of the fluctuations on the AdS5
background solution. However, in terms of N = 2 gauged supergravity, they are more

naturally organized into variations appropriate for three hypermultiplets and one vector

multiplet. This is accomplished by defining the following linear combinations of the AdS5
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mass eigenstates as the three hyperini and one gaugino

ζ1 = −λc,

ζ2 = −
(
1 + |ρ|2
1 + ρ̄2

)
ψm=−3/2,

ζ3 = − 1

15
(2ψm=11/2 − 3ψm=−9/2),

ξ1 =
1

5
(ψm=11/2 + ψm=−9/2), (A.23)

where ρ = χ+ ie−x is the SL(2,R) scalar descending from v.

Furthermore we define a phase rotated supersymmetry parameter ε′ as

ε =

(
ρ+ i

ρ̄− i

)1/2

ε′. (A.24)

We similarly rotate the ζi, ξ1 and the gravitino,

ζi =

(
ρ+ i

ρ̄− i

)1/2

ζi
′

,

ξ1 =

(
ρ+ i

ρ̄− i

)1/2

ξ1
′

,

ψα =

(
ρ+ i

ρ̄− i

)1/2

ψ′

α. (A.25)

With these identifications, the supersymmetry transformations are

δζ1
′

=

(
− i

2
γ · ∂φ− 1

2
eφγ · ∂a

)
ε′ +

ie−2u1

4τ2
v̄i

[
i(1 + ρ̄2)

(
γ ·Dei0 − ie4u3ji0

)

+(ρ̄− i)2
(
γ · f i1 − ie4u3f i0

)
− (ρ̄+ i)2

(
γ · f̄ i1 − ie4u3 f̄ i0

)]
(ε′)c,

δζ2
′

=

(
1

2ρ2
γ ·Dρ+ 3i

2ρ2
e4u3(1 + ρ2)

)
ε′ − 1

2
e−2u1vi

[(
γ ·Dei0 − ie4u3ji0

)

−i(ρ− i)(ρ̄− i)

1 + |ρ|2
(
γ · f i1 − ie4u3f i0

)
+ i

(ρ+ i)(ρ̄+ i)

1 + |ρ|2
(
γ · f̄ i1 − ie4u3 f̄ i0

)]
(ε′)c,

δζ3
′

=

[
− i

2
γ · ∂u1 −

1

8
e−4u1γ ·K1 −

i

2
e−4u1−2u3 +

i

8
e−4u1+4u3eZ

]
ε′

−e
−2u1

16τ2
vi

[
(ρ̄− i)2

(
iγ · f i1 − e4u3f i0

)
− (ρ̄+ i)2

(
iγ · f̄ i1 − e4u3 f̄ i0

)

− (1 + ρ̄2)
(
γ ·Dei0 + ie4u3ji0

)]
(ε′)c,

δξ1
′

=

[
i

2
γ · ∂u3 +

1

24
e−4u3γ · (F2 + e6u3K2) +

i

6
e−4u1−2u3 − i

4ρ2
(1 + |ρ|2)e4u3

+
i

12
e−4u1+4u3eZ

]
ε′ +

e−2u1+4u3

12ρ2
vi

[
(ρ̄− i)2f i0 − (ρ̄+ i)2f̄ i0 + i(1 + ρ̄2)ji0

]
(ε′)c,

(A.26)
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where Dρ ≡ dρ− 3
2(1 + ρ2)A1. The gravitino variation is

δψ′

α =

[
Dα +

i

24
(γα

βγ − 4δαβγγ)(e−4u3Fβγ − 2e2u3K2βγ)

+
1

6
γα

(
2e−4u1−2u3 +

3

2τ2
(1 + |ρ|2)e4u3 − 1

2
e−4u1+4u3eZ

) ]
ε′

− i

12ρ2
e−2u1+4u3viγα

[
(ρ̄− i)2f i0 − (ρ̄+ i)2f̄ i0 + i(1 + ρ̄2)ji0

]
(ε′)c, (A.27)

where the supercovariant derivative acts as

Dαε
′ =

(
∇α − 3i

2
Aα − i

4
e−4u1K1α +

i

4
eφ∂αa−

i

2ρ2
∂αρ1

)
ε′

+
1

4ρ2
e−2u1vi

(
(ρ̄− i)2f i1α − (ρ̄+ i)2f̄ i1α + i(1 + ρ̄2)Dαe

i
0

)
(ε′)c. (A.28)

Here we have written the terms from the three-forms using the SL(2,R) vielbein vi where

v1 = −(aeφ/2 + ie−φ/2) and v2 = eφ/2, such that the complex three-form takes the form

1√
τ2
G3 = viF

i
3. (A.29)

B Details of the Betti-vector truncation

The Betti-vector truncation yields N = 2 gauged supergravity coupled to two vector mul-

tiples and two hypermultiplets. The bosonic fields in the gravity and vector multiplets are

(gµν ;A1, k11, k12;u2, u3), and the eight scalars in the hypermultiplet are (u1, k, τ, τ̄ , b
i
0, b̄

i
0).

B.1 Bosonic sector

The full Lagrangian is

L = Lgr + Lhyp + Lvec + Lg,kin + LCS + Lpot, (B.1)

where the individual components are given below.

B.1.1 Hypermultiplet sector

The hypermultplet kinetic terms are

Lhyp = −4e−4u1+φMijf
i
1 ∧ ∗f̄ j1 − 8du1 ∧ ∗du1 − 4du2 ∧ ∗du2 − 12du3 ∧ ∗du3

−1

2
e−8u1K1 ∧ ∗K1 −

1

2
dφ ∧ ∗dφ− 1

2
e2φda ∧ ∗da , (B.2)

where

f i1 = Dbi0,

K1 = Dk + 2ǫij [b
i
0Db̄

j
0 + b̄i0Db

j
0],

Dk = dk −QA1 − 2k11 − 2k12. (B.3)
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Using the conventions of [48], the metric on the coset

Mhyp =
SO(4, 2)

SO(4)× SO(2)
(B.4)

is

− 1

8
TrdM ∧ ∗dM−1 =

1

4

(
dφ21 + dφ22

)
+

1

2
e−φ1+φ2dx21 +

1

2
eφ1
(
dx23 + dx24

)

+
1

2
eφ2
(
(d(x5 − x1x4) + x4dx1)

2 + (d(x6 − x1x3) + x3dx1)
2
)

+
1

2
eφ1+φ2

(
dx2 + x3dx6 + x4dx5

)2
, (B.5)

which is related to Lhyp by the field redefinitions

− φ− 4u1 = φ1,

φ− 4u1 = φ2,

a = x1,

k = x2 +
1

2
x1(x3x6 + x4x5),

2
√
2b10 = x4 − ix3,

2
√
2b20 = x5 − x1x4 − i(x6 − x1x3) . (B.6)

B.1.2 Vector multiplet sector

The scalars in the vector multiplets have

Lvec = −12du3 ∧ ∗du3 −
1

4
d(4u1 + φ) ∧ ∗d(4u1 + φ). (B.7)

The gauge kinetic terms are

Lg,kin = −1

2
e−8u3F2 ∧ ∗F2 −

1

2
e−4u2+4u3K21 ∧ ∗K21 −

1

2
e4u2+4u3K22 ∧ ∗K22. (B.8)

There is also the Chern-Simons coupling

LCS = −A1 ∧K21 ∧K22. (B.9)

From Lvec we see that the two real scalars in the vector multiplets are u3 and u2 and

they parameterize the manifold

Mv = SO(1, 1)× SO(1, 1). (B.10)

The special geometry data for this case is given by the constrained scalars

X0 = e4u3 , X1 = e2u2−2u3 , X2 = e−2u2−2u3 , (B.11)

with c012 = 1, and the vector field strengths are given by

F 0 = F2, F 1 = −K21, F 2 = K22. (B.12)
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B.1.3 Scalar potential

The scalar potential has several contributions which we distinguish for clarity:

Lpot = −
(
Vgr + VF(3)

+ VF(5)

)
, (B.13)

Vgr = −12e−4u1−2u2+2u3
(
1 + e4u2

)
+ 2e−8u1−4u3

(
e4u2 + e−4u2

)
, (B.14)

VF(3)
= 2e−4u1+8u3Mij(f

i
0f

j
0 + f

i
0f

j
0 ), (B.15)

VF(5)
=

1

2
e2Ze−8u1+8u3 , (B.16)

where

eZ = Q− 2i

3
ǫij(f

i
0f̄

j
0 − f̄ i0f

j
0 ). (B.17)

B.2 Fermion variations

The supersymmetry variations were worked out in [22]. We again organize the fermions

into linear combinations appropriate to the N = 2 multiplet identifications as opposed to

the mass eigenstates. In particular, we define

ζ1 = −λc,
ζ2 =

1

2
(ψm=11/2 + ψm=−9/2),

ξ1 = −ψm=−1/2,

ξ2 = − 1

15
(2ψm=11/2 − 3ψm=−9/2), (B.18)

where ζi are the two hyperini and ξi are the gaugini. The supersymmetry transformations

are then

δζ1 =

(
− i

2
γ · ∂φ− 1

2
eφγ · ∂a

)
ε− e−2u1 v̄i

(
iγ · f i1 + e4u3f i0

)
εc,

δζ2 =

(
− i

2
γ · ∂u1 −

1

8
e−4u1γ ·K1 −

i

4
e−4u1−2u3

(
e−2u2 + e2u2 − 1

2
e6u3eZ

))
ε

−e−2u1vi
(
iγ · f i1 + e4u3f i0

)
εc,

δξ1 =

(
− i

2
γ · ∂u2 +

1

16
e2u3γ · (e−2u2K21 − e2u2K22)−

i

4
e−4u1−2u3(e−2u2 − e2u2)

)
ε,

δξ2 =

(
− i

2
γ · ∂u3 +

1

24
e−4u3γ ·

(
F2 +

1

2
e−2u2+6u3K21 +

1

2
e2u2+6u3K22

)
+

i

12
e−4u1+4u3eZ

+
i

12
(e−4u1−2u2−2u3 + e−4u1+2u2−2u3 − 6e4u3)

)
ε− 1

3
e−2u1+4u3vif

i
0ε

c. (B.19)

Finally, the gravitino variation is

δψα =

(
Dα +

i

24
(γα

βγ − 4δβαγ
γ)(e−4u3Fβγ − e−2u2+2u3K1βγ − e2u2+2u3K2βγ)

+
1

6
γα

(
e−4u1−2u2−2u3 + e−4u1+2u2−2u3 + 3e4u3 − 1

2
e−4u1+4u3eZ

) )
ε

− i

3
γαe

−2u1+4u3vif
i
0ε

c, (B.20)
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where the covariant derivative acts on the supersymmetry parameter as

Dαε ≡
(
∇α − 3i

2
Aα − i

4
e−4u1K1α +

i

4
eφ∂αa

)
ε+ e−2u1vif

i
αε

c. (B.21)

C Details of the NS truncation

The finalN = 2 truncation is to the NS sector of IIB supergravity. The resulting truncation

has two vector multiplets and two hypermulitplets. The bosonic fields in the gravity and

vector multiplets are (gµν ;A1, b
2
1, b

2
2;φ+4u1, u3) and the eight scalars in the hypermultiplet

are (φ− 4u1, u2, c
2
0, e

2
0, b

2
0, b̄

2
0, v, v̄).

C.1 Bosonic sector

The full Lagrangian is

L = Lgr + Lhyp + Lvec + Lg,kin + Lpot . (C.1)

The individual components are given below.

C.1.1 Hypermultiplet sector

The hypermulitplet kinetic terms are

Lhyp = −1

2
e−4(u1+u2)+φĝ11 ∧ ∗ĝ11 −

1

2
e−4(u1−u2)+φĝ12 ∧ ∗ĝ12 − 4e−4u1+φf̂1 ∧ ∗ ˆ̄f1

−1

4
d(4u1 − φ) ∧ ∗d(4u1 − φ)− 4du2 ∧ ∗du2 − e−4u2Dv ∧ ∗Dv, (C.2)

where

ĝ11 = (1− |v|2)Dc0 + (1 + |v|2)De0 − 4Im (vDb0),

ĝ12 = Dc0 −De0,

f̂1 = Db0 +
i

2
v(Dc0 −De0) . (C.3)

Additionally, note that since we have set the NS three form to zero we are suppressing the

SL(2,R) indices from the RR three-form in this truncation. Using the conventions of [48],

the metric on the coset

Mhyp =
SO(4, 2)

SO(4)× SO(2)
(C.4)

is

− 1

8
TrdM ∧ ∗dM−1 =

1

4

(
dφ21 + dφ22

)
+

1

2
e−φ1+φ2dx21 +

1

2
eφ1
(
dx23 + dx24

)

+
1

2
eφ2
(
(d(x5 − x1x4) + x4dx1)

2 + (d(x6 − x1x3) + x3dx1)
2
)

+
1

2
eφ1+φ2

(
dx2 + x3dx6 + x4dx5

)2
. (C.5)
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This is related to Lhyp by the field redefinitions

φ− 4u1 = φ2,

−4u2 = φ1,√
2 v = x4 − ix,3

2
√
2b0 = x6 − x1x3 − i(x5 − x1x4),

c0 − e0 = −x1,
c0 + e0 = x2 +

1

2
x1(x

2
3 + x24) . (C.6)

C.1.2 Vector multiplet sector

The scalars in the vector multiplet have kinetic terms

Lvec = −12du3 ∧ ∗du3 −
1

4
d(4u1 + φ) ∧ ∗d(4u1 + φ). (C.7)

We see that the two real scalars in the vector multiplets are u3 and 4u1 + φ and they

parameterize the manifold

Mv = SO(1, 1)× SO(1, 1). (C.8)

In terms of A1, b1 and b2, the gauge kinetic terms are

Lg,kin = −1

2
e−8u3F2 ∧ ∗F2 −

1

2
e4u1−4u3+φg3 ∧ ∗g3 −

1

2
e4u1+4u3+φg2 ∧ ∗g2. (C.9)

We may integrate out the tensor field by dualizing ĝ3 = db2 into a vector field. This is

done by adding

∆L = b̃1 ∧ dĝ3 (C.10)

to the Lagrangian. This results in

Lg,kin = −1

2
e−8u3F2 ∧ ∗F2 −

1

2
e4u1+4u3+φg2 ∧ ∗g2 −

1

2
e−4u1+4u3−φg̃2 ∧ ∗g̃2, (C.11)

along with a Chern-Simons term

LCS = g̃2 ∧ b1 ∧ F2, (C.12)

where g̃2 = db̃1.

The special geometry data for this case is very similar to the Betti-vector sector and

is given by the following constrained scalars

X0 = e4u3 , X1 = e−2u1−2u3−φ/2, X2 = e2u1−2u3+φ/2, (C.13)

with c012 = 1. The vector field strengths are given by

F 0 = F2, F 1 = −g2, F 2 = g̃2. (C.14)

– 27 –



J
H
E
P
0
7
(
2
0
1
2
)
0
9
8

C.1.3 Scalar potential

The scalar potential has two contributions which we distinguish for clarity:

Lpot = −
(
Vgr + VF(3)

)
, (C.15)

Vgr = −12e−4u1−2u2+2u3
(
1 + |v|2 + e4u2

)
+ 9|v|2e−4u2+8u3

−2e−8u1−4u3
(
e4u2 + e−4u2(1− |v|2)2 + 2|v|2

)
, (C.16)

VF(3)
=

1

2
e−4u1+8u3+φ

(
8|f̂0|2 + e4u2P 2 + e−4u2

(
P (|v|2 − 1) + 4 Im (f̂0v)

)2)
, (C.17)

where

f̂0 = f0 −
i

2
Pv. (C.18)

C.2 Fermion variations

In order to reduce from N = 4 to N = 2, we restrict the transformation parameter ε. To

do this we make the identification

ε = −iσ2εc, (C.19)

where the conjugation is defined by εc = γ0Cε
∗. Additionally we make the same identifi-

cation for all of the fermions. Given this identification, the components of

ε =

[
ε1
ε2

]
(C.20)

satisfy the symplectic-Majorana condition, ε1 = −εc2, which can be expressed as

εi ≡ ǫijεj = εci . (C.21)

We can then identify the two hyperini as

ζ1 = λ− 2(ψ(5) + ψ(7)),

ζ2 = ψ(5) − ψ(7), (C.22)

and the gaugini are given by some linear combination of

χ1 = λ+ 2(ψ(5) + ψ(7)),

χ2 = ψ(5) + ψ(7) + 2ψ(9). (C.23)

The N = 2 susy transformations are then

δζ1 =

[
− i

2
γ · ∂(φ− 4u1) +

1

2
eφ/2−2u1(e−2u2(1− |v|2) + e2u2)(γ · g1 + 2ie−2u1−2u3−φ/2)

+
1

2
eφ/2−2u1(e−2u2(1 + |v|2)− e2u2)(γ · h1 − iPe4u3)

+ ieφ/2−2u1−2u2 [v(γ · f1 − ie4u3f0)− v̄(γ · f̄1 − ie4u3 f̄0)]

]
ε

−v̄eφ/2−2u1

[
(γ · g1 + 2ie−2u1−2u3−φ/2)− (γ · h1 − iPe4u3) + 2i(γ · f1 − ie4u3f0)

]
εc,
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δζ2 =

[
−iγ · ∂u2 −

1

4
eφ/2−2u1(e−2u2(1− |v|2) + e2u2)(γ · g1 + 2ie−2u1−2u3−φ/2)

− 1

4
eφ/2−2u1(e−2u2(1 + |v|2)− e2u2)(γ · h1 − iPe4u3)

− i

2
eφ/2−2u1−2u2 [v(γ · f1 − ie4u3f0)− v̄(γ · f̄1 − ie4u3 f̄0)]

]
ε

+
i

2
e2u2(γ ·Dv + 3v̄e4u3)εc,

δχ1 =

[
− i

2
γ · ∂(φ+ 4u1)−

1

12
e−φ/2−2u1+2u3γ · g̃2 −

1

4
eφ/2+2u1+2u3γ · g2

− ie−4u1−2u3(e−2u2(1− |v|2) + e2u2)

]
ε+ 2iv̄e−4u1−2u3εc,

δχ2 =

[
3iγ · ∂u3 +

1

4
e−4u3γ · F2 −

1

24
e−φ/2−2u1+2u3γ · g̃2 +

1

8
eφ/2+2u1+2u3γ · g2

+
i

2

(
e−4u1−2u3(e−2u2(1− |v|2) + e2u2)− 6e4u3

+ eφ/2−2u1+4u3 [e−2u2((1 + |v|2)P + 2ivf0 − 2iv̄f̄0)− e2u2P ]
) ]

ε

−
[
v̄e−4u1−2u3 − 3v̄e−2u2+4u3 + 2

(
f0 −

i

2
v̄P

)
eφ/2−2u1+4u3

]
εc, (C.24)

along with

δψα =

[
Dα +

i

24
(γα

βγ − 4δβαγ
γ)
(
e−4u3Fβγ + e−φ/2−2u1+2u3 g̃2βγ − eφ/2+2u1+2u3g2βγ

)

+
1

6
γα

(
e−4u1−2u3(e−2u2(1− |v|2) + e2u2) + 3e4u3

− 1

2
eφ/2−2u1+4u3(e−2u2((1 + |v|2)P + 2ivf0 − 2iv̄f̄0)− e2u2P )

) ]
ε

+
i

6
γα

[
(2e−4u1−2u3 + 3e−2u2+4u3)iv̄ − 2eφ/2−2u1+4u3

(
f0 −

i

2
v̄P

)]
εc. (C.25)

D Field redefinitions and conventions

Here we make explicit the relations between our reduction ansatz and those presented in

refs. [4] and [22]. Our ansatz follows the conventions of ref. [4] for the metric and the

five-form ansatz. However, we have chosen a manifestly SL(2,R) covariant notation for the

three-form. Our three-form ansatz is related to that of ref. [4] according to

b12 = B2 +
1

2
bF2, b11 = B1, 3ib10 =M0, c10 = b, e10 = b̃, j11 = 0,

b22 = C2 +
1

2
cF2, b21 = C1, 3ib20 = N0 + aM0, c20 = c, e20 = c̃, j20 = P.

(D.1)
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Additionally, the conventions here are consistent with that of the three-form in ref. [22].

But for the metric and five-form the relations are given by

u1 =
1

2
(B1 +B2), u2 =

1

2
(B1 −B2), u3 = −1

6
(B1 +B2)−

1

3
C, v = α,

eZ = 4 + φ0, K1 = A1, K21 = p21, K22 = p22.
(D.2)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License which permits any use, distribution and reproduction in any medium,

provided the original author(s) and source are credited.
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