10 research outputs found

    The use of a silicone-based biomembrane for microaerobic H2S removal from biogas

    Get PDF
    A lab-scale bio-membrane unit was developed to improve H2S removal from biogas through microaeration. Biomembrane separated biogas from air and consisted of a silicone tube covered by microaerobic biofilm. This setup allowed efficient H2S removal while minimizing biogas contamination with oxygen and nitrogen. The transport and removal of H2S, N-2, O-2, CH4 and CO2 through bare membrane, wet membrane and biomembrane was investigated. Membrane allowed the transfer of gases through it as long as there was enough driving force to induce it. H2S concentration in biogas decreased much faster with the biomembrane. The permeation of gases through the membranes decreased in order: H2S > CO2 > CH4 > O-2 > N-2. H2S removal efficiency of more than 99% was observed during the continuous experiment. Light yellow deposits on the membrane indicated the possible elemental sulfur formation due to biological oxidation of H2S. Thiobacillus thioparus was detected by FISH and PCR-DGGE

    Development and validation of novel PCR primers for identification of plasmid-mediated colistin resistance (mcr) genes in various environmental settings

    Get PDF
    Antibiotic resistance is considered one of the biggest threats to public health and has become a major concern for governments and international organizations. Combating this problem starts with improving global surveillance of antibiotic resistance genes (ARGs) and applying standardized protocols, both in a clinical and environmental context, in agreement with the One Health approach. Exceptional efforts should be directed to controlling ARGs conferring resistance to Critically Important Antimicrobials (CIA). In this study, a systematic literature review to synthesize data on the identification of mcr genes using a PCR technique was performed. Additionally, a novel set of PCR primers for mcr-1 – mcr-9 genes detection was proposed. The developed primers were in silico and experimentally validated by comparison with mcr-specific PCR primers reported in the literature. This validation, besides being a proof-of-concept for primers’ usefulness, provided insight into the distribution of mcr genes in municipal wastewater, clay and river sediments, glacier moraine, manure, seagulls and auks feces and daphnids from four countries. This analysis proved that commonly used primers may deliver false results, and some mcr genes may be overlooked in tested samples. Newly-developed PCR primers turned out to be relevant for the screening of mcr genes in various environments.info:eu-repo/semantics/publishedVersio

    Basic physical and mechanical properties of cement composites after temperature exposure

    Get PDF
    Basic physical and mechanical properties of several cement composites are determined as functions of thermal load and the results are compared with reference materials. Bulk density, matrix density, and open porosity are measured using the water vacuum saturation method. Compressive and bending strengths are determined according to the European standard. High-temperature coefficient of thermal expansion is obtained using a comparative measurement. Experimental results show that composites based on Portland cement do not resist high temperatures well. Their applicability is limited to 400 °C, due to the damage caused by hydrates decomposition. On the other hand, composites based on calcium aluminate cement exhibit a better thermal stability and retain residual strength even after being exposed to 1000 °C

    Basic physical and mechanical properties of cement composites after temperature exposure

    No full text
    Basic physical and mechanical properties of several cement composites are determined as functions of thermal load and the results are compared with reference materials. Bulk density, matrix density, and open porosity are measured using the water vacuum saturation method. Compressive and bending strengths are determined according to the European standard. High-temperature coefficient of thermal expansion is obtained using a comparative measurement. Experimental results show that composites based on Portland cement do not resist high temperatures well. Their applicability is limited to 400 °C, due to the damage caused by hydrates decomposition. On the other hand, composites based on calcium aluminate cement exhibit a better thermal stability and retain residual strength even after being exposed to 1000 °C

    High-Rate Partial Nitritation of Municipal Wastewater after Psychrophilic Anaerobic Pretreatment

    No full text
    Partial nitritation/anammox can provide energy-efficient nitrogen removal from the main stream of municipal wastewater. The main bottleneck is the growth of nitrite oxidizing bacteria (NOB) at low temperatures (<15 °C). To produce effluent suitable for anammox, real municipal wastewater after anaerobic pretreatment was treated by enriched ammonium oxidizing bacteria (AOB) in suspended sludge SBR at 12 °C. NOB were continually washed out using aerobic duration control strategy (ADCS). Solids retention time was set to 9–16 days. Using this approach, average ammonia conversion higher than 57% at high oxidation rate of 0.4 ± 0.1 kg-N kg-VSS<sup>–1</sup> d<sup>–1</sup> was achieved for more than 100 days. Nitrite accumulation (N–NO<sub>2</sub><sup>–</sup>/N–NO<sub>X</sub>) of 92% was maintained. Thus, consistently small amounts of present NOB were efficiently suppressed. Our mathematical model explained how ADCS enhanced the inhibition of NOB growth via NH<sub>3</sub> and HNO<sub>2</sub>. This approach will produce effluent suitable for anammox even under winter conditions in mild climates

    Nitrification expanded: discovery, physiology and genomics of a nitrite-oxidizing bacterium from the phylum <i>Chloroflexi</i>

    No full text
    A utilisé MicroScope PlatformInternational audienceNitrite-oxidizing bacteria (NOB) catalyze the second step of nitrification, a major process of the biogeochemical nitrogen cycle, but the recognized diversity of this guild is surprisingly low and only two bacterial phyla contain known NOB. Here, we report on the discovery of a chemolithoautotrophic nitrite oxidizer that belongs to the widespread phylum Chloroflexi not previously known to contain any nitrifying organism. This organism, named Nitrolancetus hollandicus, was isolated from a nitrifying reactor. Its tolerance to a broad temperature range (25–63 °C) and low affinity for nitrite (Ks=1 mm), a complex layered cell envelope that stains Gram positive, and uncommon membrane lipids composed of 1,2-diols distinguish N. hollandicus from all other known nitrite oxidizers. N. hollandicus grows on nitrite and CO2, and is able to use formate as a source of energy and carbon. Genome sequencing and analysis of N. hollandicus revealed the presence of all genes required for CO2 fixation by the Calvin cycle and a nitrite oxidoreductase (NXR) similar to the NXR forms of the proteobacterial nitrite oxidizers, Nitrobacter and Nitrococcus. Comparative genomic analysis of the nxr loci unexpectedly indicated functionally important lateral gene transfer events between Nitrolancetus and other NOB carrying a cytoplasmic NXR, suggesting that horizontal transfer of the NXR module was a major driver for the spread of the capability to gain energy from nitrite oxidation during bacterial evolution. The surprising discovery of N. hollandicus significantly extends the known diversity of nitrifying organisms and likely will have implications for future research on nitrification in natural and engineered ecosystems

    Nitrolancea hollandica gen. nov., sp. nov., a chemolithoautotrophic nitrite-oxidizing bacterium isolated from a bioreactor belonging to the phylum Chloroflexi

    No full text
    A novel nitrite-oxidizing bacterium (NOB), strain LbT, was isolated from a nitrifying bioreactor with a high loading of ammonium bicarbonate in a mineral medium with nitrite as the energy source. The cells were oval (lancet-shaped) rods with pointed edges, non-motile, Gram-positive (by staining and from the cell wall structure) and non-spore-forming. Strain LbT was an obligately aerobic, chemolitoautotrophic NOB, utilizing nitrite or formate as the energy source and CO2 as the carbon source. Ammonium served as the only source of assimilated nitrogen. Growth with nitrite was optimal at pH 6.8-7.5 and at 40 °C (maximum 46 °C). The membrane lipids consisted of C20 alkyl 1,2-diols with the dominant fatty acids being 10MeC18 and C18 : 1ω9. The peptidoglycan lacked meso-DAP but contained ornithine and lysine. The dominant lipoquinone was MK-8. Phylogenetic analyses of the 16s rRNA gene sequence placed strain LbT into the class Thermomicrobia of the phylum Chloroflexi with Sphaerobacter thermophilus as the closest relative. On the basis of physiological and phylogenetic data, it is proposed that strain LbT represents a novel species of a new genus, with the suggested name Nitrolancea hollandica gen. nov., sp. nov. The type strain of the type species is LbT ( = DSM 23161T = UNIQEM U798T)
    corecore