26 research outputs found
Economic development incentives: research approaches and current views
Economic development
The stress and vascular catastrophes in newborn rats: mechanisms preceding and accompanying the brain hemorrhages
In this study, we analyzed the time-depended scenario of stress response cascade preceding and accompanying brain hemorrhages in newborn rats using an interdisciplinary approach based on: a morphological analysis of brain tissues, coherent-domain optical technologies for visualization of the cerebral blood flow, monitoring of the cerebral oxygenation and the deformability of red blood cells (RBCs). Using a model of stress-induced brain hemorrhages (sound stress, 120 dB, 370 Hz), we studied changes in neonatal brain 2, 4, 6, 8 h after stress (the pre-hemorrhage, latent period) and 24 h after stress (the post-hemorrhage period). We found that latent period of brain hemorrhages is accompanied by gradual pathological changes in systemic, metabolic, and cellular levels of stress. The incidence of brain hemorrhages is characterized by a progression of these changes and the irreversible cell death in the brain areas involved in higher mental functions. These processes are realized via a time-depended reduction of cerebral venous blood flow and oxygenation that was accompanied by an increase in RBCs deformability. The significant depletion of the molecular layer of the prefrontal cortex and the pyramidal neurons, which are crucial for associative learning and attention, is developed as a consequence of homeostasis imbalance. Thus, stress-induced processes preceding and accompanying brain hemorrhages in neonatal period contribute to serious injuries of the brain blood circulation, cerebral metabolic activity and structural elements of cognitive function. These results are an informative platform for further studies of mechanisms underlying stress-induced brain hemorrhages during the first days of life that will improve the future generation's health
A surface tension magnetophoretic device for rare cell isolation and characterization
The cancer community continues to search for an efficient and cost-effective technique to isolate and characterize circulating cells (CTCs) as a 'real-time liquid biopsy'. Existing methods to isolate and analyze CTCs require various transfer, wash, and staining steps that can be time consuming, expensive, and led to the loss of rare cells. To overcome the limitations of existing CTC isolation strategies, we have developed an inexpensive 'lab on a chip' device for the enrichment, staining, and analysis of rare cell populations. This device utilizes immunomagnetic positive selection of antibody-bound cells, isolation of cells through an immiscible interface, and filtration. The isolated cells can then be stained utilizing immunofluorescence or used for other downstream detection methods. We describe the construction and initial preclinical testing of the device. Initial tests suggest that the device may be well suited for the isolation of CTCs and could allow the monitoring of cancer progression and the response to therapy over tim
The stress and vascular catastrophes in newborn rats: mechanisms preceding and accompanying the brain hemorrhages
In this study, we analyzed the time-depended scenario of stress response cascade preceding and accompanying brain hemorrhages in newborn rats using an interdisciplinary approach based on: a morphological analysis of brain tissues, coherent-domain optical technologies for visualization of the cerebral blood flow, monitoring of the cerebral oxygenation and the deformability of red blood cells (RBCs). Using a model of stress-induced brain hemorrhages (sound stress, 120 dB, 370 Hz), we studied changes in neonatal brain 2, 4, 6, 8 h after stress (the pre-hemorrhage, latent period) and 24 h after stress (the post-hemorrhage period). We found that latent period of brain hemorrhages is accompanied by gradual pathological changes in systemic, metabolic, and cellular levels of stress. The incidence of brain hemorrhages is characterized by a progression of these changes and the irreversible cell death in the brain areas involved in higher mental functions. These processes are realized via a time-depended reduction of cerebral venous blood flow and oxygenation that was accompanied by an increase in RBCs deformability. The significant depletion of the molecular layer of the prefrontal cortex and the pyramidal neurons, which are crucial for associative learning and attention, is developed as a consequence of homeostasis imbalance. Thus, stress-induced processes preceding and accompanying brain hemorrhages in neonatal period contribute to serious injuries of the brain blood circulation, cerebral metabolic activity and structural elements of cognitive function. These results are an informative platform for further studies of mechanisms underlying stress-induced brain hemorrhages during the first days of life that will improve the future generation's health
Recommended from our members
Ancient trash mounds unravel urban collapse a century before the end of Byzantine hegemony in the southern Levant.
The historic event of the Late Antique Little Ice Age (LALIA) was recently identified in dozens of natural and geological climate proxies of the northern hemisphere. Although this climatic downturn was proposed as a major cause for pandemic and extensive societal upheavals in the sixth-seventh centuries CE, archaeological evidence for the magnitude of societal response to this event is sparse. This study uses ancient trash mounds as a type of proxy for identifying societal crisis in the urban domain, and employs multidisciplinary investigations to establish the terminal date of organized trash collection and high-level municipal functioning on a city-wide scale. Survey, excavation, sediment analysis, and geographic information system assessment of mound volume were conducted on a series of mounds surrounding the Byzantine urban settlement of Elusa in the Negev Desert. These reveal the massive collection and dumping of domestic and construction waste over time on the city edges. Carbon dating of charred seeds and charcoal fragments combined with ceramic analysis establish the end date of orchestrated trash removal near the mid-sixth century, coinciding closely with the beginning of the LALIA event and outbreak of the Justinian Plague in the year 541. This evidence for societal decline during the sixth century ties with other arguments for urban dysfunction across the Byzantine Levant at this time. We demonstrate the utility of trash mounds as sensitive proxies of social response and unravel the time-space dynamics of urban collapse, suggesting diminished resilience to rapid climate change in the frontier Negev region of the empire