147 research outputs found
Association of sleep duration at age 50, 60, and 70 years with risk of multimorbidity in the UK : 25-year follow-up of the Whitehall II cohort study
Publisher Copyright: © 2022 Sabia et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Background Sleep duration has been shown to be associated with individual chronic diseases but its association with multimorbidity, common in older adults, remains poorly understood. We examined whether sleep duration is associated with incidence of a first chronic disease, subsequent multimorbidity and mortality using data spanning 25 years. Methods and findings Data were drawn from the prospective Whitehall II cohort study, established in 1985 on 10,308 persons employed in the London offices of the British civil service. Self-reported sleep duration was measured 6 times between 1985 and 2016, and data on sleep duration was extracted at age 50 (mean age (standard deviation) = 50.6 (2.6)), 60 (60.3 (2.2)), and 70 (69.2 (1.9)). Incidence of multimorbidity was defined as having 2 or more of 13 chronic diseases, follow-up up to March 2019. Cox regression, separate analyses at each age, was used to examine associations of sleep duration at age 50, 60, and 70 with incident multimorbidity. Multistate models were used to examine the association of sleep duration at age 50 with onset of a first chronic disease, progression to incident multimorbidity, and death. Analyses were adjusted for sociodemographic, behavioral, and health-related factors. A total of 7,864 (32.5% women) participants free of multimorbidity had data on sleep duration at age 50; 544 (6.9%) reported sleeping â€5 hours, 2,562 (32.6%) 6 hours, 3,589 (45.6%) 7 hours, 1,092 (13.9%) 8 hours, and 77 (1.0%) â„9 hours. Compared to 7-hour sleep, sleep duration â€5 hours was associated with higher multimorbidity risk (hazard ratio: 1.30, 95% confidence interval = 1.12 to 1.50; p < 0.001). This was also the case for short sleep duration at age 60 (1.32, 1.13 to 1.55; p < 0.001) and 70 (1.40, 1.16 to 1.68; p < 0.001). Sleep duration â„9 hours at age 60 (1.54, 1.15 to 2.06; p = 0.003) and 70 (1.51, 1.10 to 2.08; p = 0.01) but not 50 (1.39, 0.98 to 1.96; p = 0.07) was associated with incident multimorbidity. Among 7,217 participants free of chronic disease at age 50 (mean follow-up = 25.2 years), 4,446 developed a first chronic disease, 2,297 progressed to multimorbidity, and 787 subsequently died. Compared to 7-hour sleep, sleeping â€5 hours at age 50 was associated with an increased risk of a first chronic disease (1.20, 1.06 to 1.35; p = 0.003) and, among those who developed a first disease, with subsequent multimorbidity (1.21, 1.03 to 1.42; p = 0.02). Sleep duration â„9 hours was not associated with these transitions. No association was found between sleep duration and mortality among those with existing chronic diseases. The study limitations include the small number of cases in the long sleep category, not allowing conclusions to be drawn for this category, the self-reported nature of sleep data, the potential for reverse causality that could arise from undiagnosed conditions at sleep measures, and the small proportion of non-white participants, limiting generalization of findings. Conclusions In this study, we observed short sleep duration to be associated with risk of chronic disease and subsequent multimorbidity but not with progression to death. There was no robust evidence of an increased risk of chronic disease among those with long sleep duration at age 50. Our findings suggest an association between short sleep duration and multimorbidity.Peer reviewe
Learning new vocabulary implicitly during sleep transfers with cross-modal generalization into wakefulness
editorial reviewedNew information can be learned during sleep but the extent to which we can access this knowledge after awakening is far less understood. Using a novel Associative Transfer Learning paradigm, we show that, after hearing unknown Japanese words with sounds referring to their meaning during sleep, participants could identify the images depicting the meaning of newly acquired Japanese words after awakening (N = 22). Moreover, we demonstrate that this cross-modal generalization is implicit, meaning that participants remain unaware of this knowledge. Using electroencephalography, we further show that frontal slow-wave responses to auditory stimuli during sleep predicted memory performance after awakening. This neural signature of memory formation gradually emerged over the course of the sleep phase, highlighting the dynamics of associative learning during sleep. This study provides novel evidence that the formation of new associative memories can be traced back to the dynamics of slow-wave responses to stimuli during sleep and that their implicit transfer into wakefulness can be generalized across sensory modalities
L'apprentissage implicite d'un nouveau vocabulaire durant le sommeil est transférable à l'éveil avec de la généralisation cross-modale
peer reviewedNew information can be learned during sleep but the extent to which we can access this knowledge after awakening is far less understood. Using a novel Associative Transfer Learning paradigm, we show that, after hearing unknown Japanese words with sounds referring to their meaning during sleep, participants could identify the images depicting the meaning of newly acquired Japanese words after awakening (N = 22). Moreover, we demonstrate that this cross-modal generalization is implicit, meaning that participants remain unaware of this knowledge. Using electroencephalography, we further show that frontal slow-wave responses to auditory stimuli during sleep predicted memory performance after awakening. This neural signature of memory formation gradually emerged over the course of the sleep phase, highlighting the dynamics of associative learning during sleep. This study provides novel evidence that the formation of new associative memories can be traced back to the dynamics of slow-wave responses to stimuli during sleep and that their implicit transfer into wakefulness can be generalized across sensory modalities
Chronic insomnia: are patients also suffering from PTSD symptoms?
IntroductionInsomnia is highly prevalent in the general population, and is commonly associated with somatic and psychiatric comorbidities. However, its origins remain poorly-understood. Recently, adverse childhood events (ACE), including traumatic experiences, have been found to be significantly associated with both insomnia and Post-Traumatic Stress Disorders (PTSD). Many patients with PTSD suffer from sleep disorders. However, we know much less about traumatic childhood experiences in patients with insomnia and PTSD.MethodsOur exploratory study investigated a cohort of 43 patients (14 males, 29 females) clinically diagnosed with chronic insomnia at a sleep center, and systematically evaluated their condition using the trauma history questionnaire (THQ), and the PTSD checklist (PCL-5).ResultsOur results show that 83.72% of insomnia patients reported at least one traumatic event, while the prevalence of PTSD symptoms was 53.49%. For 11.6% of patients, insomnia began in childhood, while for 27.07% it began in adolescence. PCL-5 scores were associated with higher Insomnia Severity Index (ISI) scores, but not trauma. ISI scores were also higher for women, and positive relationships were observed between ISI scores, PCL-5 scores and the number of self-reported traumatic events among women.ConclusionsThese exploratory results highlight that the relationship between PTSD symptoms and insomnia could be sex-specific. They also highlight the importance of PTSD symptoms screening for patients diagnosed with chronic insomnia
Immune disruptions and night shift work in hospital healthcare professionals : the intricate effects of social jet-lag and sleep debt
Objectives: We aimed to examine the effects of circadian and sleep rhythm disruptions on immune biomarkers among hospital healthcare professionals working night shifts and rotating day shifts. Methods: Hospital nurses working either as permanent night shifters (n=95) or as day shifters rotating between morning and afternoon shifts (n=96) kept a daily diary on their sleep and work schedules over a full working week. Blood samples were collected at the beginning and end of the last shift during the week, and participants were categorized into three groups based on work shift: morning shift (39 day shifters sampled at 7:00 and 14:00), afternoon shift (57 day shifters sampled at 14:00 and 21:00), and night shift (95 night shifters sampled at 21:00 and 7:00). Circulating blood counts in immune cells, interleukin-6 and C-reactive protein concentrations as well as total sleep time per 24 hours during work days (TST24w) and free days (TST24f), sleep debt (TST24f â TST24w) and social jet-lag (a behavioral proxy of circadian misalignment) were assessed. Results: Compared with day shifters, night shifters had shorter sleep duration (TST24w=5.4 ± 1.4h), greater sleep debt (3.2 ± 1.4 h) and social jet-lag (6.7 ± 2.4 h). Variations of immune biomarkers concentrations were consistent with the expected diurnal variations among day shifters (i.e., low level in the morning, increase during the day, peak value in the evening). By contrast, in night shifters, blood concentrations of total lymphocytes, T-helper cells, cytotoxic T-cells, memory B-cells and interleukin-6 were lower at 21:00, increased during the night, and reached higher values at 7:00. Multivariate analyses ruled out significant impact of TST24w, sleep debt, and social jet-lag on immune biomarkers concentrations among day shifters. In contrast, among night shifters, multivariate analyses indicated a combined effect of total sleep time (TST24w), sleep debt and social jet-lag for total lymphocytes and T-helper cells but only a social jet-lag effect for interleukin-6 and a single total sleep time effect for neutrophil and B-Cells. Conclusions: Altogether, our results point to intricate response patterns of immune rhythms to circadian misalignment and sleep debt in night shifters. Specifically, these altered pattern expressions of immune cells may increase vulnerability to infections and reduce vaccination efficiency in night workers
High precision astrometry mission for the detection and characterization of nearby habitable planetary systems with the Nearby Earth Astrometric Telescope (NEAT)
(abridged) A complete census of planetary systems around a volume-limited
sample of solar-type stars (FGK dwarfs) in the Solar neighborhood with uniform
sensitivity down to Earth-mass planets within their Habitable Zones out to
several AUs would be a major milestone in extrasolar planets astrophysics. This
fundamental goal can be achieved with a mission concept such as NEAT - the
Nearby Earth Astrometric Telescope. NEAT is designed to carry out space-borne
extremely-high-precision astrometric measurements sufficient to detect
dynamical effects due to orbiting planets of mass even lower than Earth's
around the nearest stars. Such a survey mission would provide the actual
planetary masses and the full orbital geometry for all the components of the
detected planetary systems down to the Earth-mass limit. The NEAT performance
limits can be achieved by carrying out differential astrometry between the
targets and a set of suitable reference stars in the field. The NEAT instrument
design consists of an off-axis parabola single-mirror telescope, a detector
with a large field of view made of small movable CCDs located around a fixed
central CCD, and an interferometric calibration system originating from
metrology fibers located at the primary mirror. The proposed mission
architecture relies on the use of two satellites operating at L2 for 5 years,
flying in formation and offering a capability of more than 20,000
reconfigurations (alternative option uses deployable boom). The NEAT primary
science program will encompass an astrometric survey of our 200 closest F-, G-
and K-type stellar neighbors, with an average of 50 visits. The remaining time
might be allocated to improve the characterization of the architecture of
selected planetary systems around nearby targets of specific interest (low-mass
stars, young stars, etc.) discovered by Gaia, ground-based high-precision
radial-velocity surveys.Comment: Accepted for publication in Experimental Astronomy. The full member
list of the NEAT proposal and the news about the project are available at
http://neat.obs.ujf-grenoble.fr. The final publication is available at
http://www.springerlink.co
Sleep symptoms are essential features of long-COVID â Comparing healthy controls with COVID-19 cases of different severity in the international COVID sleep study (ICOSS-II)
Large-scale, climate-induced synchrony in the productivity of fish populations is becoming more pronounced in the world's oceans. As synchrony increases, a population's âportfolioâ of responses can be diminished, in turn reducing its resilience to strong perturbation. Here we argue that the costs and benefits of trait synchronization, such as the expression of growth rate, are context dependent. Contrary to prevailing views, synchrony among individuals could actually be beneficial for populations if growth synchrony increases during favorable conditions, and then declines under poor conditions when a broader portfolio of responses could be useful. Importantly, growth synchrony among individuals within populations has seldom been measured, despite well-documented evidence of synchrony across populations. Here, we used century-scale time series of annual otolith growth to test for changes in growth synchronization among individuals within multiple populations of a marine keystone species (Atlantic cod, Gadus morhua). On the basis of 74,662 annual growth increments recorded in 13,749 otoliths, we detected a rising conformity in long-term growth rates within five northeast Atlantic cod populations in response to both favorable growth conditions and a large-scale, multidecadal mode of climate variability similar to the East Atlantic Pattern. The within-population synchrony was distinct from the across-population synchrony commonly reported for large-scale environmental drivers. Climate-linked, among-individual growth synchrony was also identified in other Northeast Atlantic pelagic, deep-sea and bivalve species. We hypothesize that growth synchrony in good years and growth asynchrony in poorer years reflects adaptive trait optimization and bet hedging, respectively, that could confer an unexpected, but pervasive and stabilizing, impact on marine population productivity in response to large-scale environmental change.publishedVersio
Role of the Lateral Paragigantocellular Nucleus in the Network of Paradoxical (REM) Sleep: An Electrophysiological and Anatomical Study in the Rat
The lateral paragigantocellular nucleus (LPGi) is located in the ventrolateral medulla and is known as a sympathoexcitatory area involved in the control of blood pressure. In recent experiments, we showed that the LPGi contains a large number of neurons activated during PS hypersomnia following a selective deprivation. Among these neurons, more than two-thirds are GABAergic and more than one fourth send efferent fibers to the wake-active locus coeruleus nucleus. To get more insight into the role of the LPGi in PS regulation, we combined an electrophysiological and anatomical approach in the rat, using extracellular recordings in the head-restrained model and injections of tracers followed by the immunohistochemical detection of Fos in control, PS-deprived and PS-recovery animals. With the head-restrained preparation, we showed that the LPGi contains neurons specifically active during PS (PS-On neurons), neurons inactive during PS (PS-Off neurons) and neurons indifferent to the sleep-waking cycle. After injection of CTb in the facial nucleus, the neurons of which are hyperpolarized during PS, the largest population of Fos/CTb neurons visualized in the medulla in the PS-recovery condition was observed in the LPGi. After injection of CTb in the LPGi itself and PS-recovery, the nucleus containing the highest number of Fos/CTb neurons, moreover bilaterally, was the sublaterodorsal nucleus (SLD). The SLD is known as the pontine executive PS area and triggers PS through glutamatergic neurons. We propose that, during PS, the LPGi is strongly excited by the SLD and hyperpolarizes the motoneurons of the facial nucleus in addition to local and locus coeruleus PS-Off neurons, and by this means contributes to PS genesis
Altimetry for the future: Building on 25 years of progress
In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the ââGreenâ Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instrumentsâ development and satellite missionsâ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion
- âŠ