102 research outputs found
From Dome to Disease: The Respiratory Toxicity of Volcanic Cristobalite
Exposure to fine-grained volcanic ash can potentially cause acute and chronic respiratory disease. The toxicity of ash is likely to vary depending on the type and style of eruption; eruptions at dome-forming volcanoes, in particular, can produce ash containing substantial quantities of respirable crystalline silica, a recognised human carcinogen and causative agent of silicosis. Volcanic domes crystallise crystalline silica as cristobalite, which is metastable at dome-forming temperatures (ca. 850 °C), through deposition from silica-saturated vapours and through devitrification of volcanic glass.
Five dome-forming volcanoes are studied to constrain the hazard posed by volcanic cristobalite, including: Colima, Mexico; Merapi, Indonesia; Mount St. Helens, USA; Santiaguito, Guatemala; and Unzen, Japan. The evolution of the cristobalite hazard is investigated from crystallisation in volcanic settings to its potential effect on biological systems, through a series of petrological, physicochemical and toxicological studies.
We rationalise the presence of metastable cristobalite below its stability field in all domes studied by way of a textural investigation, and conclude that the incorporation of aluminium and sodium into the silica structure facilitates crystallisation. Since particle toxicology is dependent on composition and structure, the observation of cation substitutions is expanded in a geochemical and thermodynamic investigation of volcanic cristobalite to constrain its mineralogy. We find that incorporation of 1-4 wt. % aluminium leads to a poorly-ordered cristobalite structure. This investigation facilitates a mineralogical comparison of the cristobalite hazard among volcanic locations and provides the framework for assessing volcanic cristobalite toxicity. We investigate the ability of volcanic ash to elicit an in vitro pro-inflammatory response, focusing on silica-mediated experiments, and relate the influence of structure and composition to the potential physiological burden. We find that volcanic cristobalite can be mineralogically considered as a single entity among locations, and that cristobalite-bearing ash is less toxic than expected. Nonetheless, we recommend that eruptions be considered on a case-by-case basis to most effectively aid the risk mitigation work of disaster managers globally
The nature and formation of cristobalite at the Soufrière Hills volcano, Montserrat: implications for the petrology and stability of silicic lava domes
Cristobalite is commonly found in the dome lava of silicic volcanoes but is not a primary magmatic phase; its presence indicates that the composition and micro-structure of dome lavas evolve during, and after, emplacement. Nine temporally and mineralogically diverse dome samples from the Soufrière Hills volcano (SHV), Montserrat, are analysed to provide the first detailed assessment of the nature and mode of cristobalite formation in a volcanic dome. The dome rocks contain up to 11 wt.% cristobalite, as defined by X-ray diffraction. Prismatic and platy forms of cristobalite, identified by scanning electron microscopy (SEM), are commonly found in pores and fractures, suggesting that they have precipitated from a vapour phase. Feathery crystallites and micro-crystals of cristobalite and quartz associated with volcanic glass, identified using SEM-Raman, are interpreted to have formed by varying amounts of devitrification. We discuss mechanisms of silica transport and cristobalite formation, and their implications for petrological interpretations and dome stability. We conclude: (1) that silica may be transported in the vapour phase locally, or from one part of the magmatic system to another; (2) that the potential for transport of silica into the dome should not be neglected in petrological and geochemical studies because the addition of non-magmatic phases may affect whole rock composition; and (3) that the extent of cristobalite mineralisation in the dome at SHV is sufficient to reduce porosity—hence, permeability—and may impact on the mechanical strength of the dome rock, thereby potentially affecting dome stability
The structure of volcanic cristobalite in relation to its toxicity; relevance for the variable crystalline silica hazard
BACKGROUND: Respirable crystalline silica (RCS) continues to pose a risk to human health worldwide. Its variable toxicity depends on inherent characteristics and external factors which influence surface chemistry. Significant population exposure to RCS occurs during volcanic eruptions, where ashfall may cover hundreds of square km and exposure may last years. Occupational exposure also occurs through mining of volcanic deposits. The primary source of RCS from volcanoes is through collapse and fragmentation of lava domes within which cristobalite is mass produced. After 30 years of research, it is still not clear if volcanic ash is a chronic respiratory health hazard. Toxicological assays have shown that cristobalite-rich ash is less toxic than expected. We investigate the reasons for this by determining the physicochemical/structural characteristics which may modify the pathogenicity of volcanic RCS. Four theories are considered: 1) the reactivity of particle surfaces is reduced due to co-substitutions of Al and Na for Si in the cristobalite structure; 2) particles consist of aggregates of cristobalite and other phases, restricting the surface area of cristobalite available for reactions in the lung; 3) the cristobalite surface is occluded by an annealed rim; 4) dissolution of other volcanic particles affects the surfaces of RCS in the lung. METHODS: The composition of volcanic cristobalite crystals was quantified by electron microprobe and differences in composition assessed by Welch's two sample t-test. Sections of dome-rock and ash particles were imaged by scanning and transmission electron microscopy, and elemental compositions of rims determined by energy dispersive X-ray spectroscopy. RESULTS: Volcanic cristobalite contains up to 4 wt. % combined Al(2)O(3) and Na(2)O. Most cristobalite-bearing ash particles contain adhered materials such as feldspar and glass. No annealed rims were observed. CONCLUSIONS: The composition of volcanic cristobalite particles gives insight into previously-unconsidered inherent characteristics of silica mineralogy which may affect toxicity. The structural features identified may also influence the hazard of other environmentally and occupationally produced silica dusts. Current exposure regulations do not take into account the characteristics that might render the silica surface less harmful. Further research would facilitate refinement of the existing simple, mass-based silica standard by taking into account composition, allowing higher standards to be set in industries where the silica surface is modified.Natural Environment Research Council (NERC)Moyes Foundation - studentshi
The α–β phase transition in volcanic cristobalite
Cristobalite is a common mineral in volcanic ash produced from dome-forming eruptions. Assessment of the respiratory hazard posed by volcanic ash requires understanding the nature of the cristobalite it contains. Volcanic cristobalite contains coupled substitutions of Al3+ and Na+ for Si4+; similar co-substitutions in synthetic cristobalite are known to modify the crystal structure, affecting the stability of the [alpha] and [beta] forms and the observed transition between them. Here, for the first time, the dynamics and energy changes associated with the [alpha]-[beta] phase transition in volcanic cristobalite are investigated using X-ray powder diffraction with simultaneous in situ heating and differential scanning calorimetry. At ambient temperature, volcanic cristobalite exists in the [alpha] form and has a larger cell volume than synthetic [alpha]-cristobalite; as a result, its diffraction pattern sits between ICDD [alpha]- and [beta]-cristobalite library patterns, which could cause ambiguity in phase identification. On heating from ambient temperature, volcanic cristobalite exhibits a lower degree of thermal expansion than synthetic cristobalite, and it also has a lower [alpha]-[beta] transition temperature (~473 K) compared with synthetic cristobalite (upwards of 543 K); these observations are discussed in relation to the presence of Al3+ and Na+ defects. The transition shows a stable and reproducible hysteresis loop with [alpha] and [beta] phases coexisting through the transition, suggesting that discrete crystals in the sample have different transition temperatures
Development of a simulated lung fluid leaching method to assess the release of potentially toxic elements from volcanic ash
Freshly erupted volcanic ash contains a range of soluble elements, some of which can generate harmful effects in living cells and are considered potentially toxic elements (PTEs). This work investigates the leaching dynamics of ash-associated PTEs in order to optimize a method for volcanic ash respiratory hazard assessment. Using three pristine (unaffected by precipitation) ash samples, we quantify the release of PTEs (Al, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, V, Zn) and major cations typical of ash leachates (Mg, Na, Ca, K) in multiple simulated lung fluid (SLF) preparations and under varying experimental parameters (contact time and solid to liquid ratio). Data are compared to a standard water leach (WL) to ascertain whether the WL can be used as a simple proxy for SLF leaching. The main findings are: PTE concentrations reach steady-state dissolution by 24 h, and a relatively short contact time (10 min) approximates maximum dissolution; PTE dissolution is comparatively stable at low solid to liquid ratios (1:100 to 1:1000); inclusion of commonly used macromolecules has element-specific effects, and addition of a lung surfactant has little impact on extraction efficiency. These observations indicate that a WL can be used to approximate lung bioaccessible PTEs in an eruption response situation. This is a useful step towards standardizing in vitro methods to determine the soluble-element hazard from inhaled ash
Assessing the biological reactivity of organic compounds on volcanic ash: implications for human health hazard
Exposure to volcanic ash is a long-standing health concern for people living near active volcanoes and in distal urban areas. During transport and deposition, ash is subjected to various physicochemical processes that may change its surface composition and, consequently, bioreactivity. One such process is the interaction with anthropogenic pollutants; however, the potential for adsorbed, deleterious organic compounds to directly impact human health is unknown. We use an in vitro bioanalytical approach to screen for the presence of organic compounds of toxicological concern on ash surfaces and assess their biological potency. These compounds include polycyclic aromatic hydrocarbons (PAHs), polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (dlPCBs). Analysis of ash collected in or near urbanised areas at five active volcanoes across the world (Etna, Italy; Fuego, Guatemala; Kelud, Indonesia; Sakurajima, Japan; Tungurahua, Ecuador) using the bioassay inferred the presence of such compounds on all samples. A relatively low response to PCDD/Fs and the absence of a dlPCBs response in the bioassay suggest that the measured activity is dominated by PAHs and PAH-like compounds. This study is the first to demonstrate a biological potency of organic pollutants associated with volcanic ash particles. According to our estimations, they are present in quantities below recommended exposure limits and likely pose a low direct concern for human health
Volcanic air pollution and human health: recent advances and future directions
Volcanic air pollution from both explosive and effusive activity can affect large populations as far as thousands of kilometers away from the source, for days to decades or even centuries. Here, we summarize key advances and prospects in the assessment of health hazards, effects, risk, and management. Recent advances include standardized ash assessment methods to characterize the multiple physicochemical characteristics that might influence toxicity; the rise of community-based air quality monitoring networks using low-cost gas and particulate sensors; the development of forecasting methods for ground-level concentrations and associated public advisories; the development of risk and impact assessment methods to explore health consequences of future eruptions; and the development of evidence-based, locally specific measures for health protection. However, it remains problematic that the health effects of many major and sometimes long-duration eruptions near large populations have gone completely unmonitored. Similarly, effects of prolonged degassing on exposed populations have received very little attention relative to explosive eruptions. Furthermore, very few studies have longitudinally followed populations chronically exposed to volcanic emissions; thus, knowledge gaps remain about whether chronic exposures can trigger development of potentially fatal diseases. Instigating such studies will be facilitated by continued co-development of standardized protocols, supporting local study teams and procuring equipment, funding, and ethical permissions. Relationship building between visiting researchers and host country academic, observatory, and agency partners is vital and can, in turn, support the effective communication of health impacts of volcanic air pollution to populations, health practitioners, and emergency managers
Assessment of leachable elements in volcanic ashfall : a review and evaluation of a standardized protocol for ash hazard characterization.
Volcanic ash presents a widespread and common hazard during and after eruptions. Complex interactions between solid ash surfaces and volcanic gases lead to the formation of soluble salts that may be mobilized in aqueous environments. A variety of stakeholders may be concerned about the effects of ash on human and animal health, drinking water supplies, crops, soils and surface runoff. As part of the immediate emergency response, rapid dissemination of information regarding potentially hazardous concentrations of soluble species is critical. However, substantial variability in the methods used to characterize leachable elements makes it challenging to compare datasets and eruption impacts. To address these challenges, the International Volcanic Health Hazard Network (www.ivhhn.org) organized a two-day workshop to define appropriate methods for hazard assessment. The outcome of this workshop was a ‘consensus protocol’ for analysis of volcanic ash samples for rapid assessment of hazards from leachable elements, which was subsequently ratified by leading volcanological organizations. The purpose of this protocol is to recommend clear, standard and reliable methods applicable to a range of purposes during eruption response, such as assessing impacts on drinking-water supplies and ingestion hazards to livestock, and also applicable to research purposes. Where possible, it is intended that the methods make use of commonly available equipment and require little training. To evaluate method transferability, an interlaboratory comparison exercise was organized among six laboratories worldwide. Each laboratory received a split of pristine ash, and independently analyzed it according to the protocol for a wide range of elements. Collated results indicate good repeatability and reproducibility for most elements, thus indicating that the development of this protocol is a useful step towards providing standardized and reliable methods for ash hazard characterization. In this article, we review recent ash leachate studies, report the outcomes of the comparison exercise and present a revised and updated protocol based on the experiences and recommendations of the exercise participants. The adoption of standardized methods will improve and facilitate the comparability of results among studies and enable the ongoing development of a global database of leachate information relevant for informing volcanic health hazards assessment
Estimates of volcanic mercury emissions from Redoubt Volcano, Augustine Volcano, and Mount Spurr eruption ash
Ash is a potential sink of volcanically sourced atmospheric mercury (Hg), and the concentration of particle-bound Hg may provide constraints on Hg emissions during eruptions. We analyze Hg concentrations in 227 bulk ash samples from the Mount Spurr (1992), Redoubt Volcano (2009), and Augustine Volcano (2006) volcanic eruptions to investigate large-scale spatial, temporal, and volcanic-source trends. We find no significant difference in Hg concentrations in bulk ash by distance or discrete eruptive events at each volcano, suggesting that in-plume reactions converting gaseous Hg0 to adsorbed Hg2+ are happening on shorter timescales than considered in this study (minutes) and any additional in-plume controls are not discernable within intra-volcanic sample variability. However, we do find a significant difference in Hg concentration of ash among volcanic sources, which indicates that volcanoes may emit comparatively high or low quantities of Hg. We combine our Hg findings with total mass estimates of ashfall deposits to calculate minimum, first-order Hg emissions of 8.23 t Hg for Mount Spurr (1992), 1.25 t Hg for Redoubt Volcano (2009), and 0.16 t Hg for Augustine Volcano (2006). In particular, we find that Mount Spurr is a high Hg emitting volcano, and that its 1992 particulate Hg emissions likely contributed substantially to the global eruptive volcanic Hg budget for that year. Based on our findings, previous approaches that use long-term Hg/SO2 mass ratios to estimate eruptive total Hg under-account for Hg emitted in explosive events, and global volcanogenic Total Hg estimates need revisiting
A reappraisal of explosive–effusive silicic eruption dynamics: syn-eruptive assembly of lava from the products of cryptic fragmentation
Silicic volcanic eruptions range in style from gently effusive to highly explosive, and may switch style unpredictably during a single eruption. Direct observations of subaerial rhyolitic eruptions (Chaiten 2008, Cordón Caulle 2011–2012, Chile) challenged long-standing paradigms of explosive and effusive eruptive styles and led to the formulation of new models of hybrid activity. However, the processes that govern such hybrid explosive–effusive activity remain poorly understood. Here, we bring together observations of the well-studied 2011–2012 Cordón Caulle eruption with new textural and petrologic data on erupted products, and video and still imagery of the eruption. We infer that all of the activity – explosive, effusive, and hybrid – was fed by explosive fragmentation at depth, and that effusive behaviour arose from sticking and sintering, in the shallow vent region, of the clastic products of deeper, cryptic fragmentation. We use a scaling approach to determine that there is sufficient time available, during emplacement, for diffusive pyroclast degassing and sintering to produce a degassed plug that occludes the shallow conduit, feeding clastogenic, apparently effusive, lava-like deposits. Based on evidence from Cordón Caulle, and from other similar eruptions, we further argue that hybrid explosive–effusive activity is driven by episodic gas-fracking of the occluding lava plug, fed by the underlying pressurized ash- and pyroclast-laden region. The presence of a pressurized pocket of ash-laden gas within the conduit provides a mechanism for generation of harmonic tremor, and for syn-eruptive laccolith intrusion, both of which were features of the Cordón Caulle eruption. We conclude that the cryptic fragmentation models is more consistent with available evidence than the prevailing model for effusion of silicic lava that assume coherent non-fragmental rise of magma from depth to the surface without wholesale explosive fragmentation
- …