105 research outputs found
A distinct structural region of the prokaryotic ubiquitin-like protein (Pup) is recognized by the N-terminal domain of the proteasomal ATPase Mpa
AbstractThe mycobacterial ubiquitin-like protein Pup is coupled to proteins, thereby rendering them as substrates for proteasome-mediated degradation. The Pup-tagged proteins are recruited by the proteasomal ATPase Mpa (also called ARC). Using a combination of biochemical and NMR methods, we characterize the structural determinants of Pup and its interaction with Mpa, demonstrating that Pup adopts a range of extended conformations with a short helical stretch in its C-terminal portion. We show that the N-terminal coiled-coil domain of Mpa makes extensive contacts along the central region of Pup leaving its N-terminus unconstrained and available for other functional interactions.Structured summaryMINT-7262427: pup (uniprotkb:B6DAC1) binds (MI:0407) to mpa (uniprotkb:Q0G9Y7) by pull down (MI:0096) MINT-7262440: mpa (uniprotkb:Q0G9Y7) and pup (uniprotkb:B6DAC1) bind (MI:0407) by isothermal titration calorimetry (MI:0065
Repression of Sex4 and Like Sex Four2 Orthologs in Potato Increases Tuber Starch Bound Phosphate With Concomitant Alterations in Starch Physical Properties
To examine the roles of starch phosphatases in potatoes, transgenic lines were produced where orthologs of SEX4 and LIKE SEX FOUR2 (LSF2) were repressed using RNAi constructs. Although repression of either SEX4 or LSF2 inhibited leaf starch degradation, it had no effect on cold-induced sweetening in tubers. Starch amounts were unchanged in the tubers, but the amount of phosphate bound to the starch was significantly increased in all the lines, with phosphate bound at the C6 position of the glucosyl units increased in lines repressed in StSEX4 and in the C3 position in lines repressed in StLSF2 expression. This was accompanied by a reduction in starch granule size and an alteration in the constituent glucan chain lengths within the starch molecule, although no obvious alteration in granule morphology was observed. Starch from the transgenic lines contained fewer chains with a degree of polymerization (DP) of less than 17 and more with a DP between 17 and 38. There were also changes in the physical properties of the starches. Rapid viscoanalysis demonstrated that both the holding strength and the final viscosity of the high phosphate starches were increased indicating that the starches have increased swelling power due to an enhanced capacity for hydration
Conserved Odorant-Binding Proteins from Aphids and Eavesdropping Predators
Background: The sesquiterpene (E)-ß-farnesene is the main component of the alarm pheromone system of various aphid species studied to date, including the English grain aphid, Sitobion avenae. Aphid natural enemies, such as the marmalade hoverfly Episyrphus balteatus and the multicolored Asian lady beetle Harmonia axyridis, eavesdrop on aphid chemical communication and utilize (E)-ß-farnesene as a kairomone to localize their immediate or offspring preys. These aphidpredator systems are important models to study how the olfactory systems of distant insect taxa process the same chemical signal. We postulated that odorant-binding proteins (OBPs), which are highly expressed in insect olfactory tissues and involved in the first step of odorant reception, have conserved regions involved in binding (E)-ß-farnesene. Methodology: We cloned OBP genes from the English grain aphid and two major predators of this aphid species. We then expressed these proteins and compare their binding affinities to the alarm pheromone/kairomone. By using a fluorescence reporter, we tested binding of (E)-ß-farnesene and other electrophysiologically and behaviorally active compounds, including a green leaf volatile attractant. Conclusion: We found that OBPs from disparate taxa of aphids and their predators are highly conserved proteins, with apparently no orthologue genes in other insect species. Properly folded, recombinant proteins from the English grain aphid, SaveOBP3, and the marmalade hoverfly, EbalOBP3, specifically bind (E)-ß-farnesene with apparent high affinity. For the firs
Odorant-Binding Proteins of the Malaria Mosquito Anopheles funestus sensu stricto
is one of the major malaria vector species in sub-Saharan Africa. Olfaction is essential in guiding mosquito behaviors. Odorant-binding proteins (OBPs) are highly expressed in insect olfactory tissues and involved in the first step of odorant reception. An improved understanding of the function of malaria mosquito OBPs may contribute to identifying new attractants/repellents and assist in the development of more efficient and environmentally friendly mosquito controlling strategies. female antennae. To compare the absolute efficiency/potency of these chemicals, corrections were made for differences in volatility by determining the exact amount in a stimulus puff. Fourteen AfunOBP genes were cloned and their expression patterns were analyzed. AfunOBP1, 3, 7, 20 and 66 showed olfactory tissue specificity by reverse transcriptase PCR (RT-PCR). Quantitative real-time PCR (qRT-PCR) analysis showed that among olfactory-specific OBPs, AfunOBP1 and 3 are the most enriched OBPs in female antennae. Binding assay experiments showed that at pH 7, AfunOBP1 significantly binds to 2-undecanone, nonyl acetate, octyl acetate and 1-octen-3-ol but AfunOBP3, which shares 68% identify with AfunOBP1 at amino acid level, showed nearly no binding activity to the selected 12 EAG-active odorant compounds. olfactory system, and help developing new mosquito control strategies to reduce malaria transmission
Reverse and Conventional Chemical Ecology Approaches for the Development of Oviposition Attractants for Culex Mosquitoes
Synthetic mosquito oviposition attractants are sorely needed for surveillance and control programs for Culex species, which are major vectors of pathogens causing various human diseases, including filariasis, encephalitis, and West Nile encephalomyelitis. We employed novel and conventional chemical ecology approaches to identify potential attractants, which were demonstrated in field tests to be effective for monitoring populations of Cx. p. quinquefasciatus in human dwellings. Immunohistochemistry studies showed that an odorant-binding protein from this species, CquiOBP1, is expressed in trichoid sensilla on the antennae, including short, sharp-tipped trichoid sensilla type, which house an olfactory receptor neuron sensitive to a previously identified mosquito oviposition pheromone (MOP), 6-acetoxy-5-hexadecanolide. CquiOBP1 exists in monomeric and dimeric forms. Monomeric CquiOBP1 bound MOP in a pH-dependent manner, with a change in secondary structure apparently related to the loss of binding at low pH. The pheromone antipode showed higher affinity than the natural stereoisomer. By using both CquiOBP1 as a molecular target in binding assays and gas chromatography-electroantennographic detection (GC-EAD), we identified nonanal, trimethylamine (TMA), and skatole as test compounds. Extensive field evaluations in Recife, Brazil, a region with high populations of Cx. p. quinquefasciatus, showed that a combination of TMA (0.9 µg/l) and nonanal (0.15 ng/µl) is equivalent in attraction to the currently used infusion-based lure, and superior in that the offensive smell of infusions was eliminated in the newly developed synthetic mixture
The mechanisms of humic substances self-assembly with biological molecules: The case study of the prion protein
Humic substances (HS) are the largest constituent of soil organic matter and are considered as a key component of the terrestrial ecosystem. HS may facilitate the transport of organic and inorganic molecules, as well as the sorption interactions with environmentally relevant proteins such as prions. Prions enter the environment through shedding from live hosts, facilitating a sustained incidence of animal prion diseases such as Chronic Wasting Disease and scrapie in cervid and ovine populations, respectively. Changes in prion structure upon environmental exposure may be significant as they can affect prion infectivity and disease pathology. Despite its relevance, the mechanisms of prion interaction with HS are still not completely understood. The goal of this work is to advance a structural-level picture of the encapsulation of recombinant, non-infectious, prion protein (PrP) into different natural HS. We observed that PrP precipitation upon addition of HS is mainly driven by a mechanism of “salting-out” whereby PrP molecules are rapidly removed from the solution and aggregate in insoluble adducts with humic molecules. Importantly, this process does not alter the protein folding since insoluble PrP retains its α-helical content when in complex with HS. The observed ability of HS to promote PrP insolubilization without altering its secondary structure may have potential relevance in the context of “prion ecology”. These results suggest that soil organic matter interacts with prions possibly without altering the protein structures. This may facilitate prions preservation from biotic and abiotic degradation leading to their accumulation in the environment
Hsf1 Activation Inhibits Rapamycin Resistance and TOR Signaling in Yeast Revealed by Combined Proteomic and Genetic Analysis
TOR kinases integrate environmental and nutritional signals to regulate cell growth in eukaryotic organisms. Here, we describe results from a study combining quantitative proteomics and comparative expression analysis in the budding yeast, S. cerevisiae, to gain insights into TOR function and regulation. We profiled protein abundance changes under conditions of TOR inhibition by rapamycin treatment, and compared this data to existing expression information for corresponding gene products measured under a variety of conditions in yeast. Among proteins showing abundance changes upon rapamycin treatment, almost 90% of them demonstrated homodirectional (i.e., in similar direction) transcriptomic changes under conditions of heat/oxidative stress. Because the known downstream responses regulated by Tor1/2 did not fully explain the extent of overlap between these two conditions, we tested for novel connections between the major regulators of heat/oxidative stress response and the TOR pathway. Specifically, we hypothesized that activation of regulator(s) of heat/oxidative stress responses phenocopied TOR inhibition and sought to identify these putative TOR inhibitor(s). Among the stress regulators tested, we found that cells (hsf1-R206S, F256S and ssa1-3 ssa2-2) constitutively activated for heat shock transcription factor 1, Hsf1, inhibited rapamycin resistance. Further analysis of the hsf1-R206S, F256S allele revealed that these cells also displayed multiple phenotypes consistent with reduced TOR signaling. Among the multiple Hsf1 targets elevated in hsf1-R206S, F256S cells, deletion of PIR3 and YRO2 suppressed the TOR-regulated phenotypes. In contrast to our observations in cells activated for Hsf1, constitutive activation of other regulators of heat/oxidative stress responses, such as Msn2/4 and Hyr1, did not inhibit TOR signaling. Thus, we propose that activated Hsf1 inhibits rapamycin resistance and TOR signaling via elevated expression of specific target genes in S. cerevisiae. Additionally, these results highlight the value of comparative expression analyses between large-scale proteomic and transcriptomic datasets to reveal new regulatory connections
Separation – integration – and now …? - An historical perspective on the relationship between German management accounting and financial accounting
German accounting has traditionally followed a dual ledger approach with strictly separated internal cost accounting, as the basis for management information, and external financial accounting focusing on creditor protection and based on the commercial law. However, the increased adoption of integrated accounting system implies a significant change in the relationship between financial and management accounting systems. We use Hegelian dialectic to trace the historical development of German accounting from separated systems towards antithetical propositions of full integration, and the emergence of partial integration as the synthesis of this transformation process. For this reason, our paper provides a comprehensive analysis of the literature on the relationship between financial and management accounting in Germany. On this basis, we elaborate how financial accounting in Germany has been shaped by its economic context and legislation, and how financial accounting – accompanied by institutional pressures – in turn influenced management accounting. We argue that the changing relationship between management and financial accounting in the German context illustrates how current accounting practice is shaped not only by its environment, but also by its historical path. Based on this reasoning, we discuss several avenues for future research
Olfactory perireceptor and receptor events in moths: a kinetic model revised
Modelling reveals that within about 3 ms after entering the sensillum lymph, 17% of total pheromone is enzymatically degraded while 83% is bound to the pheromone-binding protein (PBP) and thereby largely protected from enzymatic degradation. The latter proceeds within minutes, 20,000-fold more slowly than with the free pheromone. In vivo the complex pheromone–PBP interacts with the receptor molecule. At weak stimulation the half-life of the active complex is 0.8 s due to the postulated pheromone deactivation. Most likely this process is enzymatically catalysed; it changes the PBP into a scavenger form, possibly by interference with the C-terminus. The indirectly determined PBP concentration (3.8 mM) is close to direct measurements. The calculated density of receptor molecules within the plasma membrane of the receptor neuron reaches up to 6,000 units per μm2. This is compared with the estimated densities of the sensory-neuron membrane protein and of ion channels. The EC50 of the model pheromone–PBP complex interacting with the receptor molecules is 6.8 μM, as compared with the EC50 = 1.5 μM of bombykol recently determined using heterologous expression. A possible mechanism widening the range of stimulus intensities covered by the dose–response curve of the receptor-potential is proposed
- …