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A distinct structural region of the prokaryotic ubiquitin-like protein (Pup)
is recognized by the N-terminal domain of the proteasomal ATPase Mpa
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The mycobacterial ubiquitin-like protein Pup is coupled to proteins, thereby rendering them as
substrates for proteasome-mediated degradation. The Pup-tagged proteins are recruited by the
proteasomal ATPase Mpa (also called ARC). Using a combination of biochemical and NMR methods,
we characterize the structural determinants of Pup and its interaction with Mpa, demonstrating
that Pup adopts a range of extended conformations with a short helical stretch in its C-terminal
portion. We show that the N-terminal coiled-coil domain of Mpa makes extensive contacts along
the central region of Pup leaving its N-terminus unconstrained and available for other functional
interactions.

Structured summary:
MINT-7262427: pup (uniprotkb:B6DAC1) binds (MI:0407) to mpa (uniprotkb:Q0G9Y7) by pull down
(MI:0096)
MINT-7262440: mpa (uniprotkb:Q0G9Y7) and pup (uniprotkb:B6DAC1) bind (MI:0407) by isothermal
titration calorimetry (MI:0065)

� 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction GGQ-motif [12,14]. The conjugation reaction consists of two
Degradation of proteins by energy-dependent, compartmental-
izing proteases is imperative for maintaining cellular homeostasis
and contributes vitally to the regulatory repertoire of cells in all
three domains of life [1–3]. The eukaryotic proteasome is essential
and represents the main processive protease in the cytosol, while
in bacteria multiple architecturally related proteases coexist [3].
The construction and functional principle is shared: a proteolytic
cylinder enclosing the protease active sites associates at both ends
with a regulatory ATPase particle [4,5]. The regulatory particle im-
poses selectivity by recognizing distinct features on the substrate
proteins and uses its ATPase activity to unravel and translocate
them into the degradation cylinder.

In eukaryotes, proteins are targeted to the proteasome by
polyubiquitination, a process in which the small protein ubiquitin
is covalently attached to a lysine residue of a substrate protein
[6–8]. Recently it has become clear that bacteria encoding a pro-
teasome [9–11], like for example Mycobacterium tuberculosis
(Mtb), use a similar tagging system termed pupylation [12–14].
In this process, the prokaryotic ubiquitin-like protein (Pup) is
conjugated to substrate-lysines via its deamidated C-terminal
chemical Societies. Published by E
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steps: First, Dop (deamidase of Pup) deamidates the C-terminal
glutamine of Pup, converting its C-terminus from GGQ to GGE
[15]. This renders Pup competent for conjugation to substrates
by the Pup-ligase PafA [15], the function of which had also been
predicted by the absence of pupylated substrates in a pafA-knock-
out strain [14] and bioinformatic analysis [16]. Interestingly, in
many organisms the Pup protein ends with GGE (Fig. 1). Almost
all of these organisms nonetheless contain the deamidase Dop,
which could either point to an additional function of Dop or could
be explained by a regulation mechanism involving other enzymes
reverting Pup-GGE to GGQ.

The recognition of polyubiquitinated substrates at the eukary-
otic 19S regulatory particle involves ubiquitin receptors featuring
ubiquitin-binding domains [17]. Analogously, the suggested ATP-
ase partner of the mycobacterial proteasome, Mpa (referred to as
ARC in other actinobacteria), was shown to interact with Pup
[14,15]. Interaction of Mpa with the proteasome is supported by
the in vivo accumulation of proteasomal substrates and an in-
creased half-life of pupylated proteins in an mpa-knockout strain
[14,18]. Furthermore, the ARC protein family possesses an N-ter-
minal domain which exhibits general chaperone-like activity and
the coiled-coil motif at the very N-terminus is typical for proteaso-
mal ATPases [19,20]. Thus, Mpa likely recognizes pupylated sub-
strates, unfolds them and translocates them into the 20S core
particle.
lsevier B.V. All rights reserved.
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Fig. 1. Alignment of Pup from different actinobacterial species. Conserved residues are colored according to their chemical properties. The height of the bars below the
alignment indicates the degree of conservation. The sequence of M. tuberculosis Pup is repeated below with numbered residues for reference. The last two lines show
secondary structure and coiled-coil prediction (H stands for helix, C for high probability of coiled-coil formation).
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Here, we characterize the interaction of mycobacterial Pup with
the proteasomal ATPase Mpa by a combination of biochemical
experiments and NMR. We show that a large part of the middle
portion of Pup (residues 21–58) is responsible for binding to Mpa
and that the coiled-coil domain of Mpa mediates this recognition.

2. Materials and methods

2.1. Purification of Pup and Mpa fragments and pulldown experiments

Pup was expressed and purified as described [15]. 15N-labeled
protein was produced by growing the cells in M9 minimal medium
supplemented with 99% 15N ammonium chloride and for 13C-label-
ing with 99% [13C6] glucose. For NMR studies cell lysis and Ni-affin-
ity purification was performed in 50 mM sodium phosphate buffer
at pH 7.8 followed by gel filtration on a Superose 75 column in
20 mM sodium phosphate pH 6.0 and 50 mM NaCl. Mpa fragments
were purified as N-terminal fusions with His6-tagged maltose
binding protein followed by a TEV cleavage site. The following M.
tuberculosis Mpa fragments were produced: Mpa-wt (residues 1–
609), Mpa-CC (residues 1–98), Mpa-ID (99–216) and Mpa-CC-ID
(1–216). Purification was performed as for Pup based on a cleav-
able His6-tag. Protein masses were verified by ESI mass spectrom-
etry. Pulldown experiments were performed as described [15].

2.2. Circular dichroism

Far-UV CD spectra of Pup were recorded on a JASCO J-810 CD
spectropolarimeter at a protein concentration of 30 lM Pup. The
spectra were measured at 23 �C in 10 mM potassium phosphate
buffer (pH 7.5) in a 0.1 cm quartz cuvette. For denaturing condi-
tions 4 M GdmCl was added. The recorded spectra were averages
of 10 measurements and were corrected for buffer background.

2.3. Multiple sequence alignment

Multiple sequence alignment of Pup was carried out with
ClustalW [21] using the BLOSUM score matrix [22]. The multiple
sequence alignment was submitted to the secondary structure pre-
diction server of jpred [23] and the Lupas method was used to pre-
dict the coiled-coil propensity [24].

2.4. NMR experiments and data analysis

All NMR measurements were performed at 10 �C on Bruker DRX
600, 700 and 750 spectrometers. The DRX 700 was equipped with a
triply tuneable cryogenic probe head. Sample conditions were 10%
D2O and 90% 0.8–1.0 mM Pup in 20 mM NaH2PO4 pH 6.0 and
50 mM NaCl. Proton chemical shifts are referenced to internal
2,2-dimethyl-2-silapentane-5-sulfonate, sodium salt (DSS), while
13C and 15N chemical shifts were referenced indirectly using the
DSS signal. The spectra were processed with the program TOPSPIN
(Bruker), and the program SPARKY [25] was used for the spectral
analysis. Peaklists for NOESY spectra were picked and assigned
automatically using atnoscandid [26]. Steady-state 15N{1H}-NOEs
were measured at 750 MHz using a saturation period of 3 s [27].

2.5. Isothermal titration calorimetry (ITC) and fluorescence anisotropy

ITC experiments were performed on a VP-ITC instrument (Mic-
roCal). Protein samples were dialysed into 50 mM Tris, pH 7.4,
150 mM NaCl, 20 mM MgCl2, 5 mM b-mercaptoethanol or 20 mM
potassium phosphate, pH 7.5, 100 mM NaCl and protein concentra-
tions were determined with a BCA assay (Sigma). Titration experi-
ments were done at 20 �C and consisted of 22 or 34 injections of 5
or 8 ll Pup at 400 lM into the cell containing 1.4 ml of wildtype
Mpa (6.5 lM hexamer concentration) or coiled-coil domain of
Mpa (19.3 lM dimer concentration). A 5 min interval was chosen
between additions and the sample was stirred at a rate of
307 rpm. Raw data were integrated, corrected for nonspecific
heats, normalized for the molar concentration and analyzed
according to a 1:1 binding model.

A cysteine variant of Pup (PupS-1C) was obtained by changing
the N-terminal Gly-Ser to Gly-Cys by site-directed-mutagenesis
[15]. PupS-1C was labeled with fluorescein-5-maleimide (Perbio
Science) and purified on a MonoQ column (GE Healthcare) [28].
For fluorescence-anisotropy measurements 1 lM fluorescein-la-
beled PupS-1C was incubated with increasing concentrations of



Fig. 2. Circular dichroism spectrum of Pup under native (black) and denaturing
(red) conditions.

Fig. 3. (a) [1H,15N]-HSQC and (b) 15N{1H}-NOE spectra of 15N labeled Pup with residue ass
are shown in red and green, respectively. Spectra were measured on a Bruker DRX 750 spe
for residues marked with an asterisk could not be determined due to resonance overlap
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Mpa (1–35 lM hexamer) at 23 �C in 50 mM Tris, pH 7.0, 150 mM
NaCl, 10% glycerol, 5 mM MgCl2, 1 mM DTT and measured at
515 nm on a PTI Quantamaster QM-7 spectrofluorometer in T-set-
up with an excitation wavelength of 492 nm. The data were fitted
according to the equation described in Supplementary Fig. 4.

3. Results

3.1. Pup proteins display highest level of sequence conservation in the
C-terminal half

While Pup is functionally analogous to ubiquitin the two pro-
teins share little sequence homology except for a di-glycine motif
at or close to the C-terminus. A sequence alignment of Pup proteins
from various actinobacterial species shows a large variability in the
N-terminal region, while the C-terminal half displays a conserved
pattern of charged and hydrophobic residues (Fig. 1). Secondary
ignments indicated for backbone amide H–N signals. Positive and negative contours
ctrometer at 10 �C. (c) 15N{1H}-NOE values plotted against the Pup sequence. Values
.
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structure prediction algorithms based on multiple sequence align-
ment indicate a helical conformation of the C-terminal part and a
high propensity to form a coiled-coil from residues A24 to E52.

3.2. The secondary structure content in an unbound Pup ensemble is
low

In order to gain information about the secondary structure con-
tent of Pup, we measured the CD spectrum under physiological
conditions and in the presence of denaturant (Fig. 2 and Supple-
mentary Fig. 2). Even in the absence of denaturant, the CD spec-
trum of Pup displays a strongly negative mean molar ellipticity
with a minimum at slightly below 200 nm, a feature indicative of
poorly structured proteins. However, a broad and low-amplitude
Fig. 5. Pulldown with Pup-decorated beads or empty control beads on different Mpa fra
(‘‘input”) was withdrawn before addition of beads. All Mpa fragments containing the
interdomain-AAA fragments do not bind.

Fig. 4. [1H, 1H] x3, x1 strips taken at the 1HN,15N chemical shifts of residues 50–58
from a 3D 15N–resolved [1H, 1H]-NOESY spectrum of Pup measured on a Bruker DRX
700 spectrometer at 10 �C. Two regions of (a) Ha–HN and (b) HN–HN NOEs are
shown for each residue. The assignments for medium range Ha, HN (i,i + 3) and HN–
HN NOEs typical for alpha helical secondary structure are indicated. Crosses mark
the intraresidue correlations.
negative band at around 225 nm predicts a low content of second-
ary structure. Addition of denaturant results in the disappearance
of this feature in the spectrum. This suggests that either a small
portion of molecules in solution are folded or only a small region
of each Pup molecule displays structure under the conditions used.

3.3. Sequence-specific NMR resonance assignments of Pup

Sequence-specific resonance assignments of Pup were obtained
by analysing a 3D HNCACB together with 3D 15N- and 13C-resolved
[1H, 1H]-NOESY spectra measured with either 15N-labeled or
15N,13C-labeled protein at 10 �C. With the exception of the two
very N-terminal residues (GS) left over from the TEV cleavage,
the entire backbone could be assigned (Fig. 3a). The backbone res-
onances of several residues overlap in the [15N,1H]-HSQC (residues
4 and 30, 11 and 12, 29 and 37, 35 and 49). Side chain assignments
are 90% complete and were used to verify the sequence assign-
ments and for preliminary structure calculations.

3.4. Pup contains regions of local structure but is globally disordered

The [15N,1H]-HSQC spectrum of Pup shows poor dispersion
which is characteristic for an unfolded protein [29] and this con-
clusion is also supported by the CD signature of Pup. Consistent
with this, 13Ca deviations from random coil values indicate that
only a modest fraction of the polypeptide, a segment from residues
50 to 58, adopts a helical conformation (Supplementary Fig. 1), and
this is confirmed by the presence of daN(i,i + 3) NOEs in this region
(Fig. 4).

We characterized the degree of flexibility in the backbone of
Pup using the 15N{1H}-NOE experiment (Fig. 3b,c). Whereas the
N- and C-terminal residues show negative NOE values indicating
unrestricted motion of the N–H bond vector on the nanosecond
timescale, most residues of Pup have values between 0.2 and 0.4,
showing some degree of motional restriction of the backbone
(Fig. 3b and c). This confirms that Pup is not entirely unstructured
in its free form.

3.5. Pup interacts with the coiled-coil domain of Mpa

After Pup has been coupled to a substrate, the tagged substrate
is ready to be unfolded and degraded by the ATPase Mpa in combi-
nation with the proteasome. A specific recognition of Pup by the
ATPase is necessary for this process. Mpa is a monomer of
67 kDa that assembles into a hexameric ring. Each monomer con-
sists of three main regions, an N-terminal coiled-coil domain (CC,
gments analyzed by SDS–PAGE and Coomassie-staining. Five percent of the sample
coiled-coil domain show binding to Pup beads while the interdomain and the
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residues 1–98), an interdomain (ID, residues 99–216) and an ATP-
ase domain of the AAA type (residues 217–609) [19]. To investigate
which portion of Mpa recognizes Pup, we generated different frag-
ments of Mpa. We tested their interaction with Pup by coupling
Pup to amine-reactive beads and then incubating these beads with
the Mpa fragments (Fig. 5). As we demonstrated previously [15],
full-length Mpa binds to immobilized Pup. The interdomain and
interdomain-AAA fragments are not recruited by Pup-decorated
beads. However, the N-terminal coiled-coil domain of Mpa specif-
ically interacts with Pup-decorated beads, indicating that it medi-
ates the binding to pupylated substrates (Fig. 5 and Supplementary
Fig. 3).

To characterize this interaction using NMR, we titrated 15N-la-
beled Pup with increasing amounts of the Mpa coiled-coil domain
fragment (referred to as Mpa-CC). Mpa-CC is likely to form dimers
as indicated by an apparent molecular weight observed in analyt-
ical size exclusion chromatography which is higher than that of a
monomer (data not shown), similar to the Rhodococcus homolog
which was also reported to form dimers. [20]. Analysis of the back-
Fig. 6. (a) Titration of Pup with Mpa-CC domain followed by NMR. [15N,1H]-HSQC spect
ratio of Pup:Mpa-CC dimer. Relative peak heights of assigned residues at each molar rat
Values for residues marked with an asterisk could not be calculated due to resonance over
indicated with a red bar. (b) Binding of Mpa to fluorescein-labeled Pup analyzed by fluore
given in Supplementary Fig. 4, with KD = 3.4 lM and R2 = 0.9998. (c) Isothermal titration
domain dimer (right). Raw calorimetric outputs are shown on top and binding isotherm
from the ITC data was 1.02 ± 0.07 for the dimeric coiled-coil construct and 1.11 ± 0.08 fo
dissociation constants.
bone 1H–15N correlations from Pup in [15N,1H]-HSQC spectra re-
vealed that numerous signals decrease in intensity with addition
of Mpa-CC due to increased linewidths (Fig. 6a). The observed
line-broadening clearly indicates interaction between Pup and
Mpa-CC. The most strongly affected 1H–15N signals identify the
Mpa-CC binding region in Pup between residues 21 and 58. The
line broadening could be due to either conformational exchange
on an intermediate NMR time scale or to an increase in the average
correlation time of the affected residues in the complex.

We then characterized the affinity of Pup for Mpa and for Mpa-
CC using fluorescence anisotropy and/or isothermal titration calo-
rimetry (ITC). The two different methods show a good correlation
with a measured KD of 3.4 lM from fluorescence anisotropy
(Fig. 6b) and 4.2 ± 0.42 lM from ITC for Pup binding to full-length
hexameric Mpa (Fig. 6c, left panel). The KD for the dimeric coiled-
coil domain determined by ITC was 27.4 ± 1.7 lM (Fig. 6c, right pa-
nel). The stoichiometry derived from the ITC data indicates one Pup
binding site per Mpa hexamer and one per dimeric coiled-coil
domain.
ra were measured on a Bruker DRX 600 spectrometer at 1:0.25,1:0.5 and 1:1 molar
io were determined by normalizing to their intensity in the spectrum of Pup alone.
lap in the [15N,1H]-HSQC spectrum. The proposed interaction site of Mpa with Pup is
scence anisotropy. The line represents a regression of the data set using the equation
calorimetry of Pup binding to hexameric full-length Mpa (left) and Mpa coiled-coil

s describing complex formation are shown below. Binding stoichiometry calculated
r hexameric full-length Mpa. Concentrations of the proteins are indicated as well as
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4. Discussion

Structural information on the prokaryotic ubiquitin-like protein
Pup and mapping its interactions with molecules involved in the
prokaryotic proteasomal degradation pathway is critical for the
mechanistic understanding of this important process. Pup interacts
with two processing enzymes, Dop and PafA, that deamidate and
couple, respectively, its C-terminus to substrate proteins [15]. This
marks the substrates for recognition by the proteasomal chaperone
Mpa and degradation by the 20S proteasome [12,14]. Here, we
have analyzed the structure and the interactions of Pup using a
combination of CD spectroscopy, NMR and biochemical
experiments.

CD analysis of Pup indicates that Pup is mostly disordered and
contains only a small amount of secondary structure. Consistent
with this, the 15N{1H}-NOE experiment indicates that the protein
is partially structured, although it does not appear to occupy one
single favored conformation. Structure calculations using as input
the nearly complete resonance assignments and the NOESY spectra
do not converge to a single folded conformation. However, the res-
idues 50–58 adopt a helical conformation. Although this region
shows residual helical structure in these preliminary calculations,
the remainder of Pup occupies a range of conformations. This is
not surprising, since the N-terminal residues are expected to be
in an extended conformation based on the low degree of sequence
homology and high glycine content, whereas the C-terminal seg-
ment shows a conserved pattern of alternating hydrophobic and
hydrophilic residues (Fig. 1). Overall, these experiments demon-
strate that Pup does not form a compact folded core but contains
a short helical segment close to its C-terminus flanked by the N-
terminal region.

Furthermore, we show that the central region of Pup, spanning
residues 21–58 and including also the helical region, is recognized
by the proteasomal chaperone Mpa. It is likely that the central re-
gion of Pup recognized by Mpa will adopt a distinct conformation
upon binding. The resulting loss in entropy would balance out the
favourable enthalpic contribution, and it has been suggested that
Fig. 7. Schematic depiction of the pupylation pathway. Dop deaminates Pup on its C-ter
catalyzed by PafA. The pupylated substrate is recognized by the N-terminal coiled-c
proteolytically cleaved.
this type of binding can lead to high selectivity paired with low
affinity [30]. This is an advantage for very dynamic systems, where
the binding partners have to associate transiently but with high
selectivity. To further characterize the interaction with the ATPase,
we have dissected Mpa into individual domains and used pull-
down experiments to reveal that its N-terminal coiled-coil region
is responsible for recognizing Pup. We have also determined the
affinity of Pup for hexameric Mpa to be 3–4 lM with two indepen-
dent methods (Fig. 6b and c). The affinity of Pup for the dimeric
coiled-coil domain alone as measured by ITC is 27 lM. The approx-
imately 8-fold higher affinity of the hexamer could be due to the
effective three times higher coiled-coil dimer concentration com-
bined with an avidity effect. It is interesting to note that the hexa-
meric full-length Mpa can only bind one Pup even though it should
have three coiled-coil dimers. This could indicate that Pup binds in
the middle of the ring-shaped Mpa, which prevents more than one
Pup from binding. The N-terminal region of Mpa thus functions as
a docking station in analogy to the ATPase N-domains of bacterial
ClpAP or ClpXP protease in adaptor-mediated substrate recruit-
ment [3].

The observed interactions suggest that separate regions of Pup
which map directly to its primary structure are responsible for dis-
tinct functional interactions. The highly mobile C-terminal gluta-
mine/glutamate residue allows for a flexible connection to its
substrate proteins and may be important for reaching into the ac-
tive sites of Dop and PafA. A large central region extending across
residues 21–58 of Pup is responsible for its recognition by Mpa,
thereby delivering tagged substrates for degradation by the protea-
some (Fig. 7). Residues 27–47 of Pup show the largest effects upon
binding, and these residues are predicted to form a coiled-coil
structure (Figs. 1 and 7), indicating a possible mode of association
with Mpa by forming a shared coiled-coil. The involvement of a rel-
atively large region of Pup in binding to Mpa likely provides a con-
siderable amount of selectivity ensuring that only tagged proteins
are recruited to the degradation machinery. Considering that a
large range of different proteins are tagged for degradation through
coupling to Pup, it is likely that these interactions are sufficient for
minal glutamine, thereby preparing it for ligation to the substrate protein, which is
oil domain of Mpa, unfolded and translocated into the proteasome, where it is
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the recognition of pupylated substrates and that no additional
interactions with substrate proteins are necessary for efficient deg-
radation. The large binding surface could also explain why a single
conjugated Pup is sufficient to mediate recognition [12,14,15]. The
function of the N-terminal tail is not known, but it is possible that
this largely unstructured region is captured by the AAA engine of
the chaperone to unfold and deliver the substrate protein for deg-
radation by the proteasome, analogous to the mechanism em-
ployed by ClpA in the degradation of ssrA-tagged substrates [31]
(Fig. 7).

Together, our studies show that, while ubiquitin is extremely
conserved differing in only three residues between yeast and
mammals and exhibits a stable, globular b-grasp fold, Pup shows
a relatively high degree of sequence variation, particularly in the
N-terminal half of the protein, and adopts a range of extended con-
formations with only a short helical stretch at the C-terminal end.
It makes extensive contact along its central region with the N-ter-
minal coiled-coil domain of the proteasomal ATPase Mpa, likely
supporting high selectivity in the highly dynamic context of sub-
strate tagging and degradation.
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