174 research outputs found

    Virtual Compton Scattering and Neutral Pion Electroproduction in the Resonance Region up to the Deep Inelastic Region at Backward Angles

    Full text link
    We have made the first measurements of the virtual Compton scattering (VCS) process via the H(e,ep)γ(e,e'p)\gamma exclusive reaction in the nucleon resonance region, at backward angles. Results are presented for the WW-dependence at fixed Q2=1Q^2=1 GeV2^2, and for the Q2Q^2-dependence at fixed WW near 1.5 GeV. The VCS data show resonant structures in the first and second resonance regions. The observed Q2Q^2-dependence is smooth. The measured ratio of H(e,ep)γ(e,e'p)\gamma to H(e,ep)π0(e,e'p)\pi^0 cross sections emphasizes the different sensitivity of these two reactions to the various nucleon resonances. Finally, when compared to Real Compton Scattering (RCS) at high energy and large angles, our VCS data at the highest WW (1.8-1.9 GeV) show a striking Q2Q^2- independence, which may suggest a transition to a perturbative scattering mechanism at the quark level.Comment: 20 pages, 8 figures. To appear in Phys.Rev.

    A polymorphism in the base excision repair gene PARP2 is associated with differential prognosis by chemotherapy among postmenopausal breast cancer patients

    Get PDF
    Background: Personalized therapy considering clinical and genetic patient characteristics will further improve breast cancer survival. Two widely used treatments, chemotherapy and radiotherapy, can induce oxidative DNA damage and, if not repaired, cell death. Since base excision repair (BER) activity is specific for oxidative DNA damage, we hypothesized that germline genetic variation in this pathway will affect breast cancer-specific survival depending on treatment. Methods: We assessed in 1,408 postmenopausal breast cancer patients from the German MARIE study whether cancer specific survival after adjuvant chemotherapy, anthracycline chemotherapy, and radiotherapy is modulated by 127 Single Nucleotide Polymorphisms (SNPs) in 21 BE

    Plane-wave impulse approximation extraction of the neutron magnetic form factor from quasielastic 3He(e,e′) at Q2=0.3 to 0.6 (GeV/c)2

    Get PDF
    A high precision measurement of the transverse spin-dependent asymmetry AT′ in 3He(e,e′) quasielastic scattering was performed in Hall A at Jefferson Lab at values of the squared four-momentum transfer, Q2, between 0.1 and 0.6 (GeV/c)2. AT′ is sensitive to the neutron magnetic form factor, GMn. Values of GMn at Q2=0.1 and 0.2 (GeV/c)2, extracted using Faddeev calculations, were reported previously. Here, we report the extraction of GMn for the remaining Q2 values in the range from 0.3 to 0.6 (GeV/c)2 using a plane-wave impulse approximation calculation. The results are in good agreement with recent precision data from experiments using a deuterium target

    Plane-wave impulse approximation extraction of the neutron magnetic form factor from quasielastic 3He(e,e′) at Q2=0.3 to 0.6 (GeV/c)2

    Get PDF
    A high precision measurement of the transverse spin-dependent asymmetry AT′ in 3He(e,e′) quasielastic scattering was performed in Hall A at Jefferson Lab at values of the squared four-momentum transfer, Q2, between 0.1 and 0.6 (GeV/c)2. AT′ is sensitive to the neutron magnetic form factor, GMn. Values of GMn at Q2=0.1 and 0.2 (GeV/c)2, extracted using Faddeev calculations, were reported previously. Here, we report the extraction of GMn for the remaining Q2 values in the range from 0.3 to 0.6 (GeV/c)2 using a plane-wave impulse approximation calculation. The results are in good agreement with recent precision data from experiments using a deuterium target

    Extraction of the Neutron Magnetic Form Factor from Quasi-Elastic 3He(pol)(e(pol),e') at Q^2 = 0.1 - 0.6 (GeV/c)^2

    Get PDF
    We have measured the spin-dependent transverse asymmetry, A_T', in quasi-elastic inclusive electron scattering from polarized 3He with high precision at Q^2 = 0.1 to 0.6 (GeV/c)^2. The neutron magnetic form factor, GMn, was extracted at Q^2 = 0.1 and 0.2 (GeV/c)^2 using a non-relativistic Faddeev calculation that includes both final-state interactions (FSI) and meson-exchange currents (MEC). In addition, GMn was extracted at Q^2 = 0.3 to 0.6 (GeV/c)^2 using a Plane Wave Impulse Approximation calculation. The accuracy of the modeling of FSI and MEC effects was tested and confirmed with a precision measurement of the spin-dependent asymmetry in the breakup threshold region of the 3He(pol)(e(pol),e') reaction. The total relative uncertainty of the extracted GMn data is approximately 3%. Close agreement was found with other recent high-precision GMn data in this Q^2 range.Comment: Archival paper, 17 pages, 10 figures, 5 tables, submitted to Physical Review C. v2: shortened considerably, updated comparison to theor

    2q36.3 is associated with prognosis for oestrogen receptor-negative breast cancer patients treated with chemotherapy

    Get PDF
    Large population-based registry studies have shown that breast cancer prognosis is inherited. Here we analyse single-nucleotide polymorphisms (SNPs) of genes implicated in human immunology and inflammation as candidates for prognostic markers of breast cancer survival involving 1,804 oestrogen receptor (ER)-negative patients treated with chemotherapy (279 events) from 14 European studies in a prior large-scale genotyping experiment, which is part of the Collaborative Oncological Gene-environment Study (COGS) initiative. We carry out replication using Asian COGS samples (n=522, 53 events) and the Prospective Study of Outcomes in Sporadic versus Hereditary breast cancer (POSH) study (n=315, 108 events). Rs4458204-A near CCL20 (2q36.3) is found to be associated with breast cancer-specific death at a genome-wide significant level (n=2,641, 440 events, combined allelic hazard ratio (HR)=1.81 (1.49-2.19); P for trend=1.90 × 10 â ̂'9). Such survival-associated variants can represent ideal targets for tailored therapeutics, and may also enhance our current prognostic prediction capabilities

    Rotavirus group : a genotype circulation patterns across Kenya before and after nationwide vaccine introduction, 2010-2018

    Get PDF
    Background Kenya introduced the monovalent G1P [8] Rotarix® vaccine into the infant immunization schedule in July 2014. We examined trends in rotavirus group A (RVA) genotype distribution pre- (January 2010–June 2014) and post- (July 2014–December 2018) RVA vaccine introduction. Methods Stool samples were collected from children aged < 13 years from four surveillance sites across Kenya: Kilifi County Hospital, Tabitha Clinic Nairobi, Lwak Mission Hospital, and Siaya County Referral Hospital (children aged < 5 years only). Samples were screened for RVA using enzyme linked immunosorbent assay (ELISA) and VP7 and VP4 genes sequenced to infer genotypes. Results We genotyped 614 samples in pre-vaccine and 261 in post-vaccine introduction periods. During the pre-vaccine introduction period, the most frequent RVA genotypes were G1P [8] (45.8%), G8P [4] (15.8%), G9P [8] (13.2%), G2P [4] (7.0%) and G3P [6] (3.1%). In the post-vaccine introduction period, the most frequent genotypes were G1P [8] (52.1%), G2P [4] (20.7%) and G3P [8] (16.1%). Predominant genotypes varied by year and site in both pre and post-vaccine periods. Temporal genotype patterns showed an increase in prevalence of vaccine heterotypic genotypes, such as the commonly DS-1-like G2P [4] (7.0 to 20.7%, P < .001) and G3P [8] (1.3 to 16.1%, P < .001) genotypes in the post-vaccine introduction period. Additionally, we observed a decline in prevalence of genotypes G8P [4] (15.8 to 0.4%, P < .001) and G9P [8] (13.2 to 5.4%, P < .001) in the post-vaccine introduction period. Phylogenetic analysis of genotype G1P [8], revealed circulation of strains of lineages G1-I, G1-II and P [8]-1, P [8]-III and P [8]-IV. Considerable genetic diversity was observed between the pre and post-vaccine strains, evidenced by distinct clusters. Conclusion Genotype prevalence varied from before to after vaccine introduction. Such observations emphasize the need for long-term surveillance to monitor vaccine impact. These changes may represent natural secular variation or possible immuno-epidemiological changes arising from the introduction of the vaccine. Full genome sequencing could provide insights into post-vaccine evolutionary pressures and antigenic diversity

    Association of genetic susceptibility variants for type 2 diabetes with breast cancer risk in women of European ancestry.

    Get PDF
    Purpose: Type 2 diabetes (T2D) has been reported to be associated with an elevated risk of breast cancer. It is unclear, however, whether this association is due to shared genetic factors. Methods: We constructed a genetic risk score (GRS) using risk variants from 33 known independent T2D susceptibility loci and evaluated its relation to breast cancer risk using the data from two consortia, including 62,328 breast cancer patients and 83,817 controls of European ancestry. Unconditional logistic regression models were used to derive adjusted odds ratios (ORs) and 95 % confidence intervals (CIs) to measure the association of breast cancer risk with T2D GRS or T2D-associated genetic risk variants. Meta-analyses were conducted to obtain summary ORs across all studies. Results: The T2D GRS was not found to be associated with breast cancer risk, overall, by menopausal status, or for estrogen receptor positive or negative breast cancer. Three T2D associated risk variants were individually associated with breast cancer risk after adjustment for multiple comparisons using the Bonferroni method (at p < 0.001), rs9939609 (FTO) (OR 0.94, 95 % CI = 0.92–0.95, p = 4.13E−13), rs7903146 (TCF7L2) (OR 1.04, 95 % CI = 1.02–1.06, p = 1.26E−05), and rs8042680 (PRC1) (OR 0.97, 95 % CI = 0.95–0.99, p = 8.05E−04). Conclusions: We have shown that several genetic risk variants were associated with the risk of both T2D and breast cancer. However, overall genetic susceptibility to T2D may not be related to breast cancer risk

    Genetic predisposition to ductal carcinoma in situ of the breast

    Get PDF
    Background: Ductal carcinoma in situ (DCIS) is a non-invasive form of breast cancer. It is often associated with invasive ductal carcinoma (IDC), and is considered to be a non-obligate precursor of IDC. It is not clear to what extent these two forms of cancer share low-risk susceptibility loci, or whether there are differences in the strength of association for shared loci. Methods: To identify genetic polymorphisms that predispose to DCIS, we pooled data from 38 studies comprising 5,067 cases of DCIS, 24,584 cases of IDC and 37,467 controls, all genotyped using the iCOGS chip. Results: Most (67 %) of the 76 known breast cancer predisposition loci showed an association with DCIS in the same direction as previously reported for invasive breast cancer. Case-only analysis showed no evidence for differences between associations for IDC and DCIS after considering multiple testing. Analysis by estrogen receptor (ER) status confirmed that loci associated with ER positive IDC were also associated with ER positive DCIS. Analysis of DCIS by grade suggested that two independent SNPs at 11q13.3 near CCND1 were specific to low/intermediate grade DCIS (rs75915166, rs554219). These associations with grade remained after adjusting for ER status and were also found in IDC. We found no novel DCIS-specific loci at a genome wide significance level of P < 5.0x10-8. Conclusion: In conclusion, this study provides the strongest evidence to date of a shared genetic susceptibility for IDC and DCIS. Studies with larger numbers of DCIS are needed to determine if IDC or DCIS specific loci exist
    corecore