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2q36.3 is associated with prognosis for oestrogen
receptor-negative breast cancer patients treated
with chemotherapy
Jingmei Li1,2,*, Linda S. Lindström3,4,* et al.#

Large population-based registry studies have shown that breast cancer prognosis is inherited.

Here we analyse single-nucleotide polymorphisms (SNPs) of genes implicated in human

immunology and inflammation as candidates for prognostic markers of breast cancer survival

involving 1,804 oestrogen receptor (ER)-negative patients treated with chemotherapy (279

events) from 14 European studies in a prior large-scale genotyping experiment, which is part

of the Collaborative Oncological Gene-environment Study (COGS) initiative. We carry out

replication using Asian COGS samples (n¼ 522, 53 events) and the Prospective Study of

Outcomes in Sporadic versus Hereditary breast cancer (POSH) study (n¼ 315, 108 events).

Rs4458204_A near CCL20 (2q36.3) is found to be associated with breast cancer-specific

death at a genome-wide significant level (n¼ 2,641, 440 events, combined allelic hazard ratio

(HR)¼ 1.81 (1.49–2.19); P for trend¼ 1.90� 10�9). Such survival-associated variants can

represent ideal targets for tailored therapeutics, and may also enhance our current prognostic

prediction capabilities.
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W
e have previously shown, through large population-
based registry studies, that survival from breast cancer
is correlated among relatives, consistent with an

inherited cancer prognosis1–4. A potential explanation for the
heritability of survival would be that family members are
predisposed to developing a breast cancer tumour of predefined
aetiology and predetermined tumour characteristics. This is
plausible given the observation that carriers of high- and
moderate-risk germline mutations in genes such as BRCA1,
BRCA2, CHEK2 and PALB2, are predisposed to specific subtypes
of breast cancer5–8, and that many common variants identified
through genome-wide association studies (GWAS) tend to be
associated with specific subtypes, with some variants more
strongly associated with oestrogen receptor (ER)-negative or
triple-negative breast cancer9–11, while others more strongly
associated with ER-positive breast cancer12–14.

It is also possible that the inherited predeterminants of survival
lie not in the biology of the tumour but rather the milieu in which
the tumour arises. The tumour microenvironment is composed of
tumour cells, fibroblasts, endothelial cells and infiltrating immune
cells, which may inhibit or promote tumour growth and
progression. There is empirical support for the concept that a
host immune response might enhance the effects of conventional
chemotherapy, conceivably having an influence on breast cancer
outcome. For example, the presence of tumour-associated
lymphocytes in a breast tumour has been suggested to be an
independent predictor of neoadjuvant chemotherapy response15.
Other studies have shown the host immune system to be involved
in the elimination of tumour cells to control cancer growth16,17.

In this candidate pathway study, we investigate the
pre-specified hypothesis that the germline common variants of
genes involved in immune response and inflammation can
predict the response to breast cancer survival for ER-negative,
chemotherapy-treated patients. We identify a single-nucleotide
polymorphism (SNP) near the CCL20 gene (2q36.3), which
is associated with a difference in the clinical outcome of ER-
negative breast cancer treated with chemotherapy independent of
known tumour prognostic features.

Results
Individual patient-level genetic and phenotypic data were
extracted from European studies in a prior large-scale genotyping
experiment conducted in the Breast Cancer Association
Consortium (BCAC), part of the Collaborative Oncological
Gene-environment Study (COGS) initiative18. For this study,
we selected women of European descent inferred from genetic
ancestry with invasive breast cancer, who have had no previous
diagnosis of the disease. Subjects missing follow-up information
on vital status, time to vital status, date of study entry and cause
of death data were excluded.

The selection of only ER-negative patients in this study was
strongly motivated by prior insight. A Swedish study of the breast
cancer prognosis of 834 sister pairs in which both were affected
showed that younger sisters with poor older sister survival had
worse survival than younger sisters with good older sister survival
(number of breast cancer deaths within 5 years from diagnosis in
younger sisters, nevent¼ 65, P¼ 0.02 in a multivariate propor-
tional hazard (Cox) analysis)3. When stratified by ER subtypes,
the increased risk of death from ER-negative breast cancer for
younger sisters with poor older sister survival compared with
younger sisters with good older sister survival was found to be
almost sevenfold (n¼ 139 sister pairs, nevent¼ 28, hazard ratio
(HR)¼ 6.69 (1.36–32.91), P¼ 0.02) in contrast to sister pairs
with the ER-positive disease (n¼ 584 sister pairs, nevent¼ 28,
HR¼ 1.54 (0.48–4.98), P¼ 0.50) (unpublished data). In addition,

in a recent Breast International Group phase III trial, increasing
lymphocytic infiltration was found to be associated with excellent
prognosis only for patients with node-positive, ER-negative/
HER2-negative disease19. Twenty studies with ER-negative cases
and at least one event (breast cancer-specific death) were eligible
for the combined analysis (Supplementary Table 1). As we were
primarily interested in response to chemotherapy, patients
missing information on chemotherapy were not considered in
our analyses. The 14 studies (n¼ 1,804) included in the combined
analysis for the chemotherapy-treated subgroup are summarized
in Supplementary Table 2. A total of 279 breast cancer-specific
deaths were recorded in a 15-year follow-up.

For the replication phase, four iCOGS Asian studies with
ER-negative breast cancer cases treated with chemotherapy and at
least one death due to breast cancer in a 15-year follow-up were
analysed (n¼ 522, 53 events, Supplementary Table 3). Early-onset
breast cancer patients from the independent Prospective Study of
Outcomes in Sporadic versus Hereditary breast cancer (POSH)
study20–21 were used as a second replication data set. In
particular, we performed our replication using ER-negative
breast cancer patients treated with chemotherapy in the POSH
study’s Stage 1 discovery data set samples (n¼ 315, 108 events)
selected to facilitate studies on breast cancer prognosis22. The
breast cancer-specific death rate is thus particularly high and
there were few cases that drop out due to lack of phenotype
information.

All women in participating studies had provided written
consent for the research and approval for each study was obtained
from their local ethical review board (Supplementary Tables 1
and 3). Collection of blood samples and clinical data from subjects
was performed in accordance with local guidelines and regulations.
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Figure 1 | Quantile–quantile (QQ) plots of the observed P-values for

association in the discovery stage. QQ plot of the observed � log10

P-values (y axis) versus the ‘expected’ � log10 rank P-values (x axis) for

trend tests of association of 7,020 human immunology and inflammation

SNPs, with the risk of dying from breast cancer for all ER-negative breast

cancer patients (black/below) and ER-negative patients treated with

adjuvant chemotherapy (blue/above) (genomic inflation factor, l¼ 1.16 and

1.14, respectively) in the discovery phase. The grey region indicates

bootstrapped 95% confidence intervals. The diagonal red line indicates

expected results under null hypothesis. The dotted lines indicate Bonferroni

threshold for multiple-testing correction (2,184 independent tests with

r2o0.2).
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Genotyping was conducted using a custom Illumina iSelect
genotyping array (iCOGS), comprising 211,115 SNPs. Details of
quality control of the iCOGS data are described in detail
elsewhere18. Briefly, individuals were excluded for any of the
following reasons: genotypically not female XX (XY, XXY or XO),
overall call rate o95%, low or high heterozygosity (Po1� 10� 6,
determined separately for individuals of European and East Asian
ancestry), genotypes discordant with those determined in
previous genotyping such that the individual appeared to be
different, genotypes for the duplicate sample that seemed to be
from a different individual and cryptic duplicates. SNPs with
call rates of o95%, SNPs that deviated from Hardy–Weinberg

equilibrium in controls at Po1� 10� 7 and SNPs for which the
genotypes were discrepant in 42% of duplicate samples across all
COGS consortia were excluded. The final analyses in the parent
COGS study were based on data from 199,961 SNPs.

Key genes related to human immunology and inflammation
were identified from two comprehensive and highly curated gene
panels (nCounter GX Human Immunology Kit and nCounter GX
Human Inflammation Kit, NanoString Technologies, Seattle, WA,
USA), which are commercially available (Supplementary Data 1).
We identified all SNPs on the iCOGS within a 50-kb window of
any gene on the panel. Out of 8,237 unique SNPs extracted from
COGS, we further removed SNPs with low minor allele frequency

Table 1 | Summary of results for association of rs4458204_A with risk of dying from breast cancer.

Patients n Breast cancer-specific deaths Per-allele HR (95% CI)* P-value

Discovery
ER-negative 2,218 332 1.83 (1.47–2.27) 4.68� 10�8

ER-negative not treated with chemotherapy 411 53 1.39 (0.69–2.81) 0.36
ER-negative and treated with chemotherapy 1,804 279 1.96 (1.55–2.47) 1.60� 10� 8

I2¼0%; Phet¼0.84

Replication
ER-negative and treated with chemotherapy

iCOGS Asian studies 522 53 1.97 (0.94–4.17) 0.07
POSH 315 108 1.41 (0.95–2.09) 0.08

Combined replication
ER-negative and treated with chemotherapy 837 161 1.52 (1.07–2.15) 0.02

I2¼0%; Phet¼0.44

Combined overall
ER-negative and treated with chemotherapy 2641 440 1.81 (1.49–2.19) 1.90� 10� 9

I2¼ 1.4%; Phet¼0.36

CI, confidence interval; COGS, Collaborative Oncological Gene-environment Study; ER, oestrogen receptor; HR, hazard ratio; I2, I2 metric; Phet, P for heterogeneity; POSH, Prospective Study of Outcomes
in Sporadic versus Hereditary breast cancer.
*Fifteen-year breast cancer-specific survival, delayed-entry Cox proportional hazards model stratified by study and adjusted for population stratification, age at diagnosis, tumour size, presence of distant
metastasis, lymph node status, tumour grade as well as surgery, chemotherapy, hormone therapy and radiotherapy.
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Figure 2 | Manhattan plot for association in the discovery stage. Manhattan plot showing directly genotyped SNPs plotted according to

chromosomal location (x axis), with � log10 P-values (y axis) derived from trend tests of association of 7,020 human immunology and inflammation SNPs

with the risk of dying from breast cancer for all ER-negative patients (above) and ER-negative patients treated with chemotherapy (below) in the discovery

phase. Blue and red lines indicate the Bonferroni threshold for multiple-testing correction for 2,184 (r2o0.2) and genome-wide significance level

(5� 10� 8), respectively. SNPs with FDRs of o10% are additionally encircled and denoted in green. Chromosomal positions are based on NCBI build 36.
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(o0.05) and low call rate (o0.95). After quality-control exclu-
sions, we analysed 7,020 non-overlapping SNPs in 557 unique gene
regions (from 597 genes on the original nCounter panels).

In the POSH study, rs4458204 was genotyped on the Illumina
660 W-Quad SNP array. Details can be found in the parent POSH
article22. Briefly, genotyping for the samples was conducted in

2q36.3
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‘snp.plotter’ package in R.
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by a horizontal line, and the point estimate is given by a square whose height is inversely proportional to the s.e. of the estimate. The summary odds ratio is

drawn as a diamond with horizontal limits at the confidence limits and width inversely proportional to itss.e.
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two separate batches in two locations (Mayo Clinic and the
Genome Institute of Singapore). To ensure harmonization of the
genotype calling, the intensity data were combined and used to
generate genotypes based on the algorithm available in the
genotyping module of Illumina’s Genome Studio software.

Breast cancer survival, right-truncated at 15 years after diagnosis,
was modelled by using multivariate Cox proportional hazard
analyses, treating each SNP as an ordinal variable (that is, 0, 1 and
2 copies of minor allele). Analyses were partially adjusted for age at
diagnosis (years), study and seven principal components (as
recommended by COGS) as covariates. As comparisons of survival
are often confounded by differences in the patients, their tumours
or the treatments, we further included covariates on tumour
characteristics and treatment in a fully adjusted model,which is
presented as the main analysis in this study. The fully adjusted
model was additionally adjusted for tumour size (r2, 42 and r5,
or 45 cm), presence of distant metastasis (M from the Tumour,
Nodes and Metastasis (TNM) staging system), lymph node status
(negative/positive), histopathological grade (well, moderately or
poorly differentiated), surgery (no surgery, breast-saving or
mastectomy with or without axillary), hormone therapy (Yes/No)
and radiotherapy (no radiation, breast only, breast and lymph
nodes or lymph nodes only). Missing values were coded separately
as missing. Separate baseline hazard functions were fitted for each
study. Between-study heterogeneity was evaluated by using the Q
statistic and the I2 metric23. Estimated HRs and confidence limits
are presented for heterozygotes and minor allele homozygotes,
relative to the major allele homozygotes. Delayed entry (left
truncation) was allowed for all models to adjust for the timing of
blood draw. The proportional hazards assumption for each SNP
was assessed using Schoenfeld’s test statistics24. The Kaplan–Meier
estimator for delayed-entry data was computed using the survfit
function from the survival package in R. The Nagelkerke pseudo
R-squared statistic was used to assess variance explained25.

To adjust for multiple testing without overly penalizing
the tests, we determined the number of ‘independent’ SNPs.

SNPs were thinned using the ‘—indep-pairwise’ option in
PLINK26 such that all SNPs within a window size of 50 SNPs
(step size of 10) were required to have r2o0.2. This procedure
resulted in a set of 2,184 independent SNPs pruned by linkage
disequilibrium. The Bonferroni-adjusted threshold for 2,184
independent tests is 2.29� 10� 5. In addition to standard
Bonferroni adjustment, a 10% false discovery rate (FDR)
threshold was applied to try to identify more candidate SNPs
associated with breast cancer outcome. An FDR-adjusted P-value
of 0.10 implies that 10% of significant tests will result in false
positives.

The results for tests of association between 7,020 human
immunology and inflammation SNPs and risk of death from
ER-negative breast cancer are summarized in Supplementary
Data 2 and 3. The deviation of the smaller observed P-values from
those expected (l¼ 1.16) is consistent with multiple weak
associations between these SNPs and survival for ER-negative
breast cancer patients (Fig. 1). In particular, for a single SNP
rs4458204_A located on chromosome 2:228637113 (minor allele
frequency¼ 0.12), the w2 (1df) association test statistic was much
higher than for the other SNPs and was close to surpassing the
threshold for experiment-wide significance after Bonferroni
adjustment (Po2.29� 10� 5) in the partially adjusted analysis
stratified by study and adjusted for only population stratification
and age (n¼ 2,218, 332 events, per-allele HR¼ 1.54 (1.26–1.90),
P for trend¼ 3.62� 10� 5, Supplementary Data 3). However,
after further adjusting for appropriate patient tumour and
treatment characteristics, the SNP association surpassed the
threshold for genome-wide significance (Po5� 10� 8) (per-allele
HR¼ 1.83 (1.47–2.27), P for trend¼ 4.68� 10� 8, Table 1 and
Fig. 2), a conservative threshold which is likely to be overly
stringent27. The lack of an association signal tower could be
because the iCOGS was designed to have minimum linkage
disequilibrium across SNPs. No SNP within a 100-kb window is
correlated to rs4458204 with r240.2 (Fig. 3). The association was
stronger for a subset of ER-negative patients who had been
treated with chemotherapy (n¼ 1,804, 279 events, per-allele
HR¼ 1.96 (1.55–2.47), P for trend¼ 1.60� 10� 8). We found no
evidence of heterogeneity in the per-allele HR across 14 studies
(I2¼ 0%, P for heterogeneity¼ 0.84; forest plot in Fig. 4).
Univariate Kaplan–Meier survival curves of breast cancer-
specific survival for ER-negative patients treated with
chemotherapy by rs4458204 genotypes are presented in Fig. 5
(log-rank P¼ 3.18� 10� 6). The median survival time for the AA
genotype at rs4458204 was 11.5 years. SNPs in three other loci
corresponding to regions around the transforming growth factor
beta receptor II (TGFBR2), interleukin 12B (IL12B) and
interferon induced with helicase C domain 1 (IFIH1) genes
were found to be associated with breast cancer-specific death with
FDR-adjusted Po0.10 (Fig. 2).

From our replication study of rs4458204_A using multi-ethnic
iCOGS Asian samples (522 ER-negative patients treated with
chemotherapy, 53 events; see Supplementary Table 3), the
per-allele HR after controlling for tumour characteristics and
treatment was 1.97 (0.94–4.17); P for trend¼ 0.07, Table 1).
Together with multivariable-adjusted results from a second
replication of the SNP using early-onset breast cancer patients
POSH study, significant evidence of replication was observed
(combined per-allele HR¼ 1.52 (1.07–2.15), P for trend¼ 0.02,
Table 1). From a meta-analysis of both discovery and replication
stages, the association of the SNP with risk of dying from
breast cancer was found to be 1.81 (1.49–2.19; P for trend¼
1.90� 10� 9) with no observed heterogeneity (I2¼ 1.4%, P for
heterogeneity¼ 0.36; Table 1).

The cluster plots for the most significant SNP in our analysis,
rs4458204 (CCL20), and three other index SNPs of loci for which
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the associated test statistic passed FDRo0.1, namely rs1367610
(TGFBR2), rs2569254 (IL12B) and rs13422767 (IFIH1), were
examined. All SNPs showed good discrimination of the three
genotypes in cluster plots for the BCAC samples that passed
quality control in the parent COGS study (Fig. 6).

Discussion
rs4458204 is located B41.5 kb upstream of the chemokine (C–C
motif) ligand 20 (CCL20) gene. Chemokines are important
mediators of immune response, and CCL20 has previously been
shown to induce migration and proliferation of breast epithelial
cells28. CCL20 has also been reported to be strongly chemotactic
for lymphocytes and weakly attracts neutrophils29. However,
rs4458204 was not found to be a significant (P for trend40.05)
expression trait quantitative locus in any of the tissues (that is,
adipose subcutaneous, artery tibial, blood, heart, lung, muscle
skeletal, nerve tibial, skin and thyroid) reported on the publicly
available Genotype-Tissue Expression Portal30.

It is of note that the association of rs4458204_A with the
survival of ER-negative breast cancer patients treated with
chemotherapy increased and the strength of the association
became stronger after adjustment for tumour characteristics
and type of treatment (per-allele HR (95% confidence interval)
from 1.64 (1.31–2.05) to 1.96 (1.55–2.47), P for trend
from 1.27� 10� 5 to 1.60� 10� 8). This suggests that tumour

characteristics and treatment covariates are likely to be
confounders and thus it is desirable to include them in the fully
adjusted model to obtain a more accurate effect size of the genetic
factor. Moreover, it has also been shown that adjustment for
prognostic factors will lead to a gain in power for statistical
analyses. Genes in other regions indentified by the less stringent
FDR threshold (TGFBR2, IL12B and IFIH1) have been implicated
to play a role in breast cancer disease progression, suggesting that
there are potentially more variants in immune response and
inflammation genes that are associated with breast cancer
prognosis. Although TGFBR2 is a breast cancer susceptibility
locus18, none of the SNPs annotated to this gene was significantly
associated with breast cancer risk (P40.05) in the parent COGS
study.

Although several GWAS have aimed to find genetic markers
associated with breast cancer survival to date22,31–33, few credible
variants have been robustly identified. The threefold greater
breast cancer mortality for affected sisters is comparable in
magnitude to the familial relative risk for breast cancer incidence,
for which close to 100 independent susceptibility loci based on
common variants (SNPs) have been identified, and these explain
only a small proportion of familial aggregation of risk18. The
failure to identify a similar number of survival-associated loci
influencing survival may reflect the much lower statistical power
for survival analyses to date, but may also reflect the substantial
heterogeneity in tumour characteristics and treatment. As such, it
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has been suggested that sufficiently powered studies investigating
specific cancer subtypes or treatment subgroups would need to be
much larger to discover more regions in the genome associated
with breast cancer prognosis33. In agreement, the association
between rs4458204 and breast cancer survival for this study was
found to be more pronounced (larger HR) for women with ER-
negative disease treated with chemotherapy (Table 1). However,
as we did not study the association for women with ER-positive
disease, the impact of this SNP on survival for those women
remains unclear. One of the strengths of our study is that we have
based our gene selection on commercially pre-designed panels of
genes known to be differentially expressed in immunology and
inflammation, which covers a comprehensive and validated list of
relevant genes. The use of the iCOGS array in the BCAC
consortium allowed us to investigate genetic variation across
4500 immune response genes and provided an unprecedented
large sample size with detailed clinical information to examine
their associations with breast cancer survival. The results were
also replicated by the POSH study, which is not part of the COGS
consortium. However, SNPs related to immune response and
inflammation were not specifically selected to be put on the
iCOGS panel to give comprehensive coverage of these genes; only
557 of the 597 genes (B93%) were represented. The proportion
of total phenotypic variance (Nagelkerke pseudo R-squared)
explained by this SNP alone was also small, at B1.3%, suggesting
that many more variants will need to be discovered for such
genetic data to be useful in a clinical setting.

Our findings suggest that host factors affecting the ability to
respond to systemic treatment or to mount an effective
immunologic response contribute to the heritability of prognosis.
Such survival-associated variants can represent ideal targets for
tailored therapeutics and may also enhance our current
prognostic prediction capabilities.
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Institute, 300 Herston Road, Brisbane, Queensland 4006, Australia. 27 Research Department, Peter MacCallum Cancer Center, East Melbourne, Victoria
3002, Australia. 28 Sir Peter MacCallum Department of Oncology, University of Melbourne, St Andrews Place East, East Melbourne, Victoria 3002, Australia.
29 Department of Oncology, St Vincent’s Hospital Melbourne, 9 Princes Street, Fitzroy, Victoria 3065, Australia. 30 Vesalius Research Center (VRC), VIB,
Herestraat 49, 3000 Leuven, Belgium. 31 Laboratory for Translational Genetics, Department of Oncology, University of Leuven, Herestraat 49, 3000 Leuven,
Belgium. 32 Multidisciplinary Breast Center, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium. 33 Division of Cancer Epidemiology, German
Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany. 34 Department of Cancer Epidemiology/Clinical Cancer Registry,
University Clinic Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany. 35 Institute for Medical Biometrics and Epidemiology, University Clinic
Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany. 36 Cancer Epidemiology Centre, Cancer Council Victoria, 1 Rathdowne Street,
Melbourne, Victoria 3053, Australia. 37 Department of Preventive Medicine, Keck School of Medicine, University of Southern California, 1975 San Pablo
Street, Los Angeles, California 90033, USA. 38 University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, Hawaii 96813, USA. 39 Department of Genetics,
Institute for Cancer Research, Oslo University Hospital, Radiumhospitalet, Ullernchausseen 70, N-0310 Oslo, Norway. 40 K.G. Jebsen Center for Breast
Cancer Research, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Kirkeveien 166, 0450 Oslo, Norway. 41 Department of Clinical
Molecular Biology (EpiGen), Medical Division, Akershus University Hospital, Sykehusveien 25, 1478 Lørenskog, Norway. 42 Laboratory of Cancer Genetics and
Tumor Biology, Department of Clinical Chemistry and Biocenter Oulu, University of Oulu, Oulu University Hospital, Aapistie 5A, FI-90220 Oulu, Finland.
43 Laboratory of Oncology, Oulu University Hospital, University of Oulu, Kajaanintie 50, FI-90220 Oulu, Finland. 44 Ontario Cancer Genetics Network,
Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, Canada M5G 1� 5. 45 Department of Molecular
Genetics, University of Toronto, 1 King’s College Circle, Toronto, Ontario, Canada M5S 1A8. 46 Prosserman Centre for Health Research, Lunenfeld-Tanenbaum
Research Institute of Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, Canada M5G 1� 5. 47 Division of Epidemiology, Dalla Lana School of
Public Health, University of Toronto, 155 College Street, Toronto, Ontario, Canada M5T 3M7. 48 Research, Lunenfeld-Tanenbaum Research Institute of Mount
Sinai Hospital, 600 University Avenue, Toronto, Ontario, Canada M5G 1� 5. 49 Department of Human Genetics, Leiden University Medical Center,
Einthovenweg 20, 2333 ZC Leiden, The Netherlands. 50 Department of Pathology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The
Netherlands. 51 Department of Surgical Oncology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands. 52 Department of
Medical Oncology, Erasmus MC Cancer Institute, Groene Hilledijk 301, 3075EA Rotterdam, The Netherlands. 53 Department of Clinical Genetics, Erasmus
University Medical Center, Groene Hilledijk 301, 3075EA Rotterdam, The Netherlands. 54 Molecular Genetics of Breast Cancer, DKFZ, Im Neuenheimer Feld
280, 69120 Heidelberg, Germany. 55 Institute of Human Genetics, Pontificia University Javeriana, Carrera 7, Bogotá 11001000, Colombia. 56 Frauenklinik der
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