145 research outputs found
Visualisation and Interpretation of Moraine Landscapes in North- East Germany â the Ideal View on Landscape
Visual representations of the earthâs surface can nowadays be produced on the basis of data with high resolution and accuracy. Especially 3D-visualisations can provide an excellent basis for âcomprehensive cognitionâ. However, specific accentuations and generalisations are necessary to turn them into an adequate cognitive tool. Here we introduce a specific generalisation approach, presented by visualisations of two lowland landscape sections in the state of Brandenburg, Germany
What are the effects of climate change on agriculture in North East Central Europe?
Global and climate changes influence the basic conditions for agriculture and so there is not only a demand for a consequent climate protection but also for an adaptation of agriculture to these global changing conditions. For the whole "Maerkisch-Oderland" district (60x40 km) within the moraine landscape of North-East-Germany mainly used for agriculture water balance, nitrogen and sulphur loads as well as crop yields are calculated for two land use and climate scenarios. The comparison between the Scenario2050 and the Scenario2000 reveals significant changes of the water balance (decrease in percolation water, increase in actual evapotranspiration) as well as the concentration of the examined nitrogen in the percolation water. For the study region the crop yields decrease only slightly if the CO2 fertilizing effect is taken into account. Adaptation measures in reaction to the changing climate conditions for an economically secured and sustainable agriculture are recommended.climate change impact assessment, water balance, nitrogen load, crop yield, moraine landscape, Environmental Economics and Policy, Farm Management,
The Environmental Effects of Global Changes on Northeast Central Europe in the Case of Non-Modified Agricultural Management
Climate impact scenarios for agriculture usually consider yield development, landscape water balance, nutrient dynamics or the endangerment of habitats separately. Scenario results are further limited by roughly discriminated land use types at low spatial resolution or they are restricted to single sites and isolated crops. Here, we exemplify a well data based comprehensive sensitivity analysis of a drought endangered agrarian region in Northeast Germany using a 2050 climate scenario. Coherently modelled results on water balance and yields indicate that agricultural production may persist, whereas wetlands and groundwater production will be negatively affected. The average percolation rate decreases from 143 mm a-1 to 12 mm a-1, and the average yield decline broken down by crops ranges from 4% for summer wheat to 14% for potatoes (main cereals: 5%)
PCT and beyond: toward a computational framework for âintelligentâ communicative systems
Recent years have witnessed increasing interest in âintelligentâ autonomous machines such as robots. However, there is a long way to go before autonomous systems reach the level of capabilities required for even the simplest of tasks involving human-robot interaction - especially if it involves communicative behavior such as speech and language. The field of Artificial Intelligence (AI) has made great strides in these areas, and has graduated from high-level rule-based paradigms to embodied architectures whose operations are grounded in real physical environments. What is still missing, however, is an overarching theory of intelligent communicative behavior that informs system-level design decisions. This chapter introduces a framework that extends the principles of Perceptual Control Theory (PCT) toward a remarkably symmetric architecture for a needs-driven communicative agent. It is concluded that, if behavior is the control of perception (the central tenet of PCT), then perception (for communicative agents) is the simulation of behavior
- âŠ