2,090 research outputs found
Observation of Andreev bound states in bicrystal grain-boundary Josephson junctions of the electron doped superconductor LaCeCuO
We observe a zero-bias conductance peak (ZBCP) in the ab-plane quasiparticle
tunneling spectra of thin film grain-boundary Josephson junctions made of the
electron doped cuprate superconductor LaCeCuO. An applied magnetic field
reduces the spectral weight around zero energy and shifts it non-linearly to
higher energies consistent with a Doppler shift of the Andreev bound states
(ABS) energy. For all magnetic fields the ZBCP appears simultaneously with the
onset of superconductivity. These observations strongly suggest that the ZBCP
results from the formation of ABS at the junction interfaces, and,
consequently, that there is a sign change in the symmetry of the
superconducting order parameter of this compound consistent with a d-wave
symmetry.Comment: 9 pages, 7 figures; December 2004, accepted for publication in Phys.
Rev.
Shrinking a large dataset to identify variables associated with increased risk of Plasmodium falciparum infection in Western Kenya
Large datasets are often not amenable to analysis using traditional single-step approaches. Here, our general objective was to apply imputation techniques, principal component analysis (PCA), elastic net and generalized linear models to a large dataset in a systematic approach to extract the most meaningful predictors for a health outcome. We extracted predictors for Plasmodium falciparum infection, from a large covariate dataset while facing limited numbers of observations, using data from the People, Animals, and their Zoonoses (PAZ) project to demonstrate these techniques: data collected from 415 homesteads in western Kenya, contained over 1500 variables that describe the health, environment, and social factors of the humans, livestock, and the homesteads in which they reside. The wide, sparse dataset was simplified to 42 predictors of P. falciparum malaria infection and wealth rankings were produced for all homesteads. The 42 predictors make biological sense and are supported by previous studies. This systematic data-mining approach we used would make many large datasets more manageable and informative for decision-making processes and health policy prioritization
Effect of Impurity Scattering on the Nonlinear Microwave Response in High-Tc Superconductors
We theoretically investigate intermodulation distortion in high-Tc
superconductors. We study the effect of nonmagnetic impurities on the real and
imaginary parts of nonlinear conductivity. The nonlinear conductivity is
proportional to the inverse of temperature owing to the dependence of the
damping effect on energy, which arises from the phase shift deviating from the
unitary limit. It is shown that the final-states interaction makes the real
part predominant over the imaginary part. These effects have not been included
in previous theories based on the two-fluid model, enabling a consistent
explanation for the experiments with the rf and dc fields
Wind measurement system
A system for remotely measuring vertical and horizontal winds present in discrete volumes of air at selected locations above the ground is described. A laser beam is optically focused in range by a telescope, and the output beam is conically scanned at an angle about a vertical axis. The backscatter, or reflected light, from the ambient particulates in a volume of air, the focal volume, is detected for shifts in wavelength, and from these, horizontal and vertical wind components are computed
Conceptual aspects of QCD factorization in hadronic B decays
I review the meaning of ``QCD factorization'' in hadronic two-body B decays
and then discuss recent results of theoretical (rather than phenomenological)
nature: the proof of factorization at two loops; the identification of
``chirally enhanced'' power corrections; and the role of annihilation
contributions.Comment: 10 pages, LaTeX. Based on talks presented at the UK Phenomenology
Workshop on Heavy Flavour and CP Violation, 17 - 22 September 2000, Durham,
proceedings to appear in J. Phys. G; the 5th International Symposium on
Radiative Corrections (RADCOR2000), Carmel, California, September 11 - 15,
2000; the 4th Workshop on Continuous Advances in QCD, Minneapolis, 12-14 May
2000; the Vth International Workshop on Heavy Quark Physics, Dubna, 6-8 April
200
Theory for Electron-Doped Cuprate Superconductors: d-wave symmetry order parameter
Using as a model the Hubbard Hamiltonian we determine various basic
properties of electron-doped cuprate superconductors like
and for a
spin-fluctuation-induced pairing mechanism. Most importantly we find a narrow
range of superconductivity and like for hole-doped cuprates -
symmetry for the superconducting order parameter. The superconducting
transition temperatures for various electron doping concentrations
are calculated to be much smaller than for hole-doped cuprates due to the
different Fermi surface and a flat band well below the Fermi level. Lattice
disorder may sensitively distort the symmetry via
electron-phonon interaction
Green's function of fully anharmonic lattice vibration
Motivated by the discovery of superconductivity in beta-pyrochlore oxides, we
study property of rattling motion coupled with conduction electrons. We derive
the general expression of the Green's function of fully anharmonic lattice
vibration within the accuracy of the second order perturbation of electron-ion
interaction by introducing self-energy, vertex-correction, and normalization
factor for each transition. Using the expression, we discuss the characteristic
properties of the spectral function in the entire range from weakly anharmonic
potential to double-well case, and calculate NMR relaxation rate due to the two
phonon Raman process
Topological Qubit Design and Leakage
We examine how best to design qubits for use in topological quantum
computation. These qubits are topological Hilbert spaces associated with small
groups of anyons. Op- erations are performed on these by exchanging the anyons.
One might argue that, in order to have as many simple single qubit operations
as possible, the number of anyons per group should be maximized. However, we
show that there is a maximal number of particles per qubit, namely 4, and more
generally a maximal number of particles for qudits of dimension d. We also look
at the possibility of having topological qubits for which one can perform
two-qubit gates without leakage into non-computational states. It turns out
that the requirement that all two-qubit gates are leakage free is very
restrictive and this property can only be realized for two-qubit systems
related to Ising-like anyon models, which do not allow for universal quantum
computation by braiding. Our results follow directly from the representation
theory of braid groups which means they are valid for all anyon models. We also
make some remarks on generalizations to other exchange groups.Comment: 13 pages, 3 figure
Renormalization of the elementary excitations in hole- and electron-doped cuprates due to spin fluctuations
Extending our previous studies we present results for the doping-, momentum-,
frequency-, and temperature- dependence of the kink-like change of the
quasiparticle velocity resulting from the coupling to spin fluctuations. In the
nodal direction a kink is found in both the normal and superconducting state
while in the antinodal direction a kink occurs only below due to the
opening of the superconducting gap. A pronounced kink is obtained only for
hole-doped, but not for electron-doped cuprates and is characteristically
different from what is expected due to electron-phonon interaction. We further
demonstrate that the kink structure is intimately connected to the resonance
peak seen in inelastic neutron scattering. Our results suggest similar effects
in other unconventional superconductors like .Comment: revised version, 12 pages, 19 figures. accepted for publication in
PR
Consistent Analysis of the Transition Form Factor in the Whole Physical Region
In the paper, we show that the transition form factor can be
calculated by using the different approach in the different regions and
they are consistent with each other in the whole physical region. For the
transition form factor in the large recoil regions, one can apply the
PQCD approach, where the transverse momentum dependence for both the hard
scattering part and the non-perturbative wavefunction, the Sudakov effects and
the threshold effects are included to regulate the endpoint singularity and to
derive a more reliable PQCD result. Pionic twist-3 contributions are carefully
studied with a better endpoint behavior wavefunction for and we find
that its contribution is less than the leading twist contribution. Both the two
wavefunctions and of the B meson can give sizable
contributions to the transition form factor and should be kept for a
better understanding of the B decays. The present obtained PQCD results can
match with both the QCD light-cone sum rule results and the extrapolated
lattice QCD results in the large recoil regions.Comment: 18pages, 6 figure
- …
