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We theoretically investigate the intermodulation distortion in high-Tc superconductors. We

study the effect of nonmagnetic impurities on the real and imaginary part of the nonlinear

conductivity. The nonlinear conductivity is proportional to the inverse of the temperature

owing to the dependence of the damping effect on the energy, which arises from the phase

shift deviating from the unitary limit. It is shown that the final-states interaction makes

the real part predominant over the imaginary part. These effects have not been included in

previous theories on the basis of the two-fluid model, and then make it possible to give a

consistent explanation for the experiments with the rf and dc field.
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The high-temperature superconductors are attractive for use in microwave circuits because

of their low surface resistance compared to the normal metals.1) This low-loss property is

disturbed by the nonlinearity of its response to the external field. The nonlinearity means that

the system is not stable with respect to changes in the input power. This effect makes the

superconductor unsuitable to practical use. On the other hand the nonlinear response is useful

to investigate intrinsic properties of the superconductivity. It was predicted that the nonlinear

Meissner effect (NLME) shows peculiar behavior in unconventional superconductors.2) This

prediction is summarized in the following two points. One is that the nonlinear correction

to the magnetic field penetration depth (λ) is proportional to the inverse of the temperature

(T ). Then the divergence at low temperature leads to a nonanalytic response. The other is

that the nonlinear correction takes different values depending on the direction of the external

field. These can be evidence of the existence of nodes in superconductors.

There are several experiments on this effect and these experiments show different results

depending on the methods of the measurement. The experiment, which measures the depen-

dence of λ on the magnetic field, show the result inconsistent with the theoretical prediction.3)

(Neither the low-temperature upturn nor the angle dependence is observed.) The intermodu-

lation distortion (IMD) is theoretically supposed to reflect the NLME.4) The experiment on
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the IMD seemingly shows the result consistent with the theoretical prediction.5) (Only the

low-temperature upturn is observed. The angle dependence has not been investigated. In this

sense this experiment is inadequate as the evidence of the NLME.)

In this paper we develop the theory of the nonlinear microwave response microscopically

and consider how this contradiction arises. In the experiment on the IMD the power is mea-

sured, which is written as PIMD ∝ |∆Rs + i∆Xs|2.6) Here, ∆Rs = ∆σ1/(2σ2)
√

ωµ/σ2 and

∆Xs = −∆σ2/(2σ2)
√

ωµ/σ2 for σ2 >> σ1. (Rs, Xs, σ = σ1 − iσ2 are the surface resistance,

the surface reactance and the conductivity, respectively and ∆ means the nonlinear correc-

tion.) Previous theories on the IMD assume the validity of the two-fluid model in addition to

that of Yip and Sauls theory and only ∆σ2 is considered.7) (We show that this assumption

does not necessarily hold.) This is enough in the case of the response to the nonlinear dc field

as in ref.3) In the case of the IMD, however, there is a contribution from ∆σ1 in general.

In the linear response it is known that σ2 >> σ1 holds. On the other hand the relation

between ∆σ1 and ∆σ2 has not been known. Therefore we calculate both of the real and

imaginary part of the nonlinear conductivity to see which quantity is predominant. We have

to specify a mechanism of the dissipation in order to estimate ∆σ1, though this is not the

case of ∆σ2. The NLME comes into question at the low temperature region, where the 1/T -

upturn is supposed to be observed. Therefore we consider mainly the effect of nonmagnetic

impurities on the nonlinear microwave response. This is because as for the dissipation the

impurity-scattering effect is dominant at low temperature and the electron-electron correlation

is dominant near Tc.
8) In this sense we do not take account of the type of correlation effect

which works as the enhancement factor and can be effective for the response to the static

external field.9) The absence of the NLME with the nonlinear dc field can be explained by

this effect. It is made possible to give an explanation to the above contradictory behavior by

combining this effect with the invalidity of the two-fluid model discussed here.

We consider the isotropic impurity scattering. The self-energy with the self-consistent

t-matrix approximation is

ΣR
0 (ε) =

ΓiG
R
0 (ε)

cot2δ − GR
0 (ε)2

. (1)

Here, Γi = ni/πN(0) (ni and N(0) are the impurity density and the density of states at the

Fermi level in the normal state, respectively) and GR
0 (ε) = Tr

∑

k ĜR
ε,k/(2πN(0)) with the

Green function,

ĜR
ε,k =

1

ε̃2 − ξ2
k − ∆2

k

(

ε̃ + ξk ∆k

∆k ε̃ − ξk

)

. (2)

(ε̃ = ε−ΣR
0 (ε).) The nonlinear response function (the third order) is written as follows. (The

vertex correction is given by the functional derivative of the self-energy by the one-particle

Green function as in the conserving approximation,10) which is also derived from Keldysh’s
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Fig. 1. (b) and (c) The representative diagrams for K(3). The solid and wavy lines express the one-

particle Green function and the external field, respectively. The shaded rectangles denote the vertex

correction. (a) The diagram of the linear response. (d) The diagram of the impurity-scattering

effect with the self-consistent t-matrix approximation.

method on the nonequilibrium state.11)) K(3)(ω1, ω2, ω3) = 1
3!

∑

[i,j,k]

∫

dεK̃
(3)
ε (ωi, ωj, ωk).

(The conductivity is written as, ∆σ ∝ K(3)/ω.)
∑

[i,j,k] means the sum of all permutations

{i, j, k} = {1, 2, 3} and ω = ω1 + ω2 + ω3.

K̃(3)
ε (ω1, ω2, ω3) = Tr[−fε4ĝ

RRRR
ε1ε2ε3ε4 − (fε3 − fε4)ĝ

RRRA
ε1ε2ε3ε4 − (fε2 − fε3)ĝ

RRAA
ε1ε2ε3ε4

− (fε1 − fε2)ĝ
RAAA
ε1ε2ε3ε4 + fε1ĝ

AAAA
ε1ε2ε3ε4

+Tr[−fε4{ĥRRR
ε4ε1ε2D

RR
ε2,ε4ĥ

RRR
ε2ε3ε4 + ĥRRR

ε3ε4ε1D
RR
ε1,ε3ĥ

RRR
ε1ε2ε3} − (fε3 − fε4)ĥ

RAR
ε3ε4ε1D

RR
ε1,ε3ĥ

RRR
ε1ε2ε3

− (fε1 − fε2)ĥ
ARA
ε4ε1ε2D

AA
ε2,ε4ĥ

AAA
ε2ε3ε4 + fε1{ĥAAA

ε4ε1ε2D
AA
ε2,ε4ĥ

AAA
ε2ε3ε4 + ĥAAA

ε3ε4ε1D
AA
ε1,ε3ĥ

AAA
ε1ε2ε3}]

+Tr[−(fε3 − fε4)ĥ
ARR
ε4ε1ε2D

RA
ε2,ε4ĥ

RRA
ε2ε3ε4 − (fε2 − fε3)ĥ

ARR
ε4ε1ε2D

RA
ε2,ε4ĥ

RAA
ε2ε3ε4

− (fε2 − fε3)ĥ
AAR
ε3ε4ε1D

RA
ε1,ε3ĥ

RRA
ε1ε2ε3 − (fε1 − fε2)ĥ

AAR
ε3ε4ε1D

RA
ε1,ε3ĥ

RAA
ε1ε2ε3].

(3)

Here, ĝT1T2T3T4
ε1ε2ε3ε4 =

∑

k vkĜ
T1
ε1,kvkĜ

T2
ε2,kvkĜ

T3
ε3,kvkĜ

T4
ε4,k, ĥT1T2T3

ε1ε2ε3 =
∑

k ĜT1
ε1,kvkĜ

T2
ε2,kvkĜ

T3
ε3,k, vk is

the quasiparticle velocity, fε = tanh(ε/2T ) and ε1 = ε, ε2 = ε−ω1, ε3 = ε−ω1−ω2, ε4 = ε−ω

, ω = ω1 + ω2 + ω3. DRR
ε,ε′ and DRA

ε,ε′ are vertex corrections and given afterward. The first and

second trace represents the variation of the density of states and the self-energy under the

external field, respectively. The third trace means the vertex correction which represents the

final-states interaction. The reason for the invalidity of an application of the two-fluid model

to the nonlinear response is as follows. One of the reasons is that it is based on the assumption

that the damping effect is independent of the energy. The other is that it includes only the

nonlinear response of the density of states (the omission of the dependence of the damping

effect on the external field and the final-states interaction). Therefore we investigate these two

aspects. The diagrams for the nonlinear response are shown in Fig. 1. Fig. 1(a) indicates the

diagram of the linear response and the nonlinear corrections are shown in (b) and (c). Fig.
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Fig. 2. The temperature dependences of ReK
(3)
DOS

/ω|ω→0 and ImK
(3)
DOS

with various values of the

phase shift δ and Γi = 0.001.

1(b) and (c) represent the nonlinear response with the variation of the density of states and

the vertex correction, respectively. In the linear response the vertex correction does not exist

in the case of the isotropic impurity scattering.

First we consider the nonlinear response arising from the variation of the density of states,

the response function is written as follows.

ReK
(3)
DOS

ω

∣

∣

∣

∣

ω→0

=

∫

dε
∂fε

∂ε

π

3
Re

(

∂2nwR
ε

∂ε2

)

1

γε

. (4)

ImK
(3)
DOS =

∫

dε
∂fε

∂ε

2π

3
Re

(

∂2nwR
ε

∂ε2

)

. (5)

Here γε = −ImΣ0(ε), nxR
ε =

∫

FS Vxε̃/
√

ε̃2 − ∆2
k and V0,v,w = 1, v2

k, v
4
k, respectively. (We put

∆k = ∆0cos2θ and take ∆0 as the unit of energy in the following numerical calculations.) If

γε is independent of the energy, we have the same result as with the two-fluid model.

The temperature dependences of ReK
(3)
DOS/ω and ImK

(3)
DOS are shown in Fig. 2. As the

phase shift δ deviates from the unitary scattering (δ = π/2), ReK
(3)
DOS/ω|ω→0 has larger values

and becomes proportional to the inverse of the temperature. On the other hand ImK
(3)
DOS does

not show clear 1/T -divergence but is cut off at low temperature. (The graph of δ = 0.475π is

seemingly divergent, but this is also verified to be cut off by comparing with that of smaller

δ or 1/T .) This behavior of K
(3)
DOS can be explained by the dependence of the damping rate

on the energy. In previous theories on the nonlinear response in the Meissner state the 1/T -

divergence is supposed to come from the derivative of the density of states, which is cut off at

low temperatures by the impurity scattering.12) (In clean systems Re∂2nε/∂ε2 ∝ δ(ε) because

of Renε ∝ |ε|.) If the damping rate takes a constant value, the result of Fig. 2 cannot be

explained. The energy dependence of the damping rate γε is shown in Fig. 3. As δ deviates

from π/2, γε decreases around ε ' 0. Then Re∂2nwR
ε /∂ε2 increases, but is cut off at low
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Fig. 3. The energy dependence of γε with the same parameters as in Fig. 2.

energy because of γ0 6= 0. Therefore the different dependences on the temperature arise in

Fig. 2; ReK
(3)
DOS/ω shows 1/T -divergence owing to the energy-dependent damping effect and

ImK
(3)
DOS is cut off at low temperature reflecting the energy dependence of Re∂2nwR

ε /∂ε2.

The nonlinear correction to K(3) resulting from the variation of the self-energy is repre-

sented with the diagram similar to Fig. 1(c). The four-point vertex is expressed as DRR
ε,ε =

niT
R2
ε /(1 − niT

R2
ε iπ∂n0R

ε /∂ε). This term is small compared with the vertex correction DRA
ε,ε ,

which is verified with numerical calculation. Therefore we omit this term.

Next we consider a contribution of the vertex correction to K(3), which is written as

K
(3)
V C =

∫

dε
∂fε

∂ε

π2

3

∑

[i,j,k]

ωk(N1 + iωN2)D
RA
ω−ωi

(N1 + iωkN2). (6)

Here N1 = Re(∂nvR
ε /∂ε)/γε, N2 = [N1/γε + Im(∂2nvR

ε /∂ε2)]/(2γε) and DRA
ω−ωi

= (ω − ωi +

2iγε)/[π(ω − ωi)Ren0R
ε /γε]. (The term with DRA does not exist in the case of the nonlinear

dc field.) The way in which the vertex correction depends on the frequency originates from

the identity,

Σ̂R
ε+ω − Σ̂A

ε = ΓiT̂
R
ε+ω

1

πN(0)

∑

k

(ĜR
k,ε+ω − ĜA

k,ε)T̂
A
ε (7)

(here T̂R
ε = (−cotδτ̂3 − ∑k ĜR

k,ε/πN(0))−1 and τ̂3 =

(

1 0

0 −1

)

), which is similar to the

identity discussed in the localization problem.13)

In the numerical calculation of the two-tone intermodulation distortion we put ω1 = ω2 =

ω + ∆ω and ω3 = −ω − 2∆ω, and then keep ω1,2,3/ω constant as ω → 0. The contributions

from the vertex correction, ReK
(3)
V C/ω|ω→0 and ImK

(3)
V C , are shown in Fig. 4. At δ = π/2

both ReK
(3)
V C/ω|ω→0 and ImK

(3)
V C decrease with lowering the temperature. As the phase shift

deviates from π/2 they show the upturn as 1/T increases. These behavior is explained by

the energy dependence of the damping rate and its effect on the density of states. Both
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Fig. 4. The temperature dependences of ReK
(3)
V C

/ω and ImK
(3)
V C

with various values of the phase

shift δ and Γi = 0.001. We put ∆ω/ω = 0.01.

ReK
(3)
V C/ω|ω→0 and ImK

(3)
V C are independent of phase shifts at high temperature. This means

that the impurity-scattering effect is less dependent on phase shifts in this temperature region

as is shown in high-energy part of Fig. 3. The dependences of K(3) on phase shifts appear at

the low temperature region. The expression of K(3) indicates that ReK
(3)
V C/ω|ω→0 and ImK

(3)
V C

are proportional to γ−1
ε and γ0

ε , respectively. This makes behavior of the real and imaginary

part of K(3) different. ReK
(3)
V C/ω|ω→0 shows almost 1/T -divergence, but ImK

(3)
V C is roughly

proportional to 1/
√

T . The absence of cut-off at low temperature in ImK
(3)
V C (unlike the case

of ImK
(3)
DOS) originates from the energy dependence of density of states (n0R

ε ) in the vertex

correction DRA.

We see in Figs. 2 and 4 that the real part of K(3) shows 1/T -divergence at some values of

phase shifts. On the other hand ImK(3) does not show such behavior. We should clarify which

of ∆σ1 and ∆σ2 is predominant in order to specify the origin of the low-temperature upturn

in the IMD power. To see this we evaluate the following ratio. γ0(ReK(3)/ω)/ImK(3), which

is equivalent to (γ0/ω)∆σ1/∆σ2, is shown in Fig. 5. In the hydrodynamic regime, which is

the premise of our calculation, γ0 is larger than ω. Therefore ∆σ2 is always predominant over

∆σ1 if (γ0/ω)∆σ1/∆σ2 < 1 holds. On the other hand there is a possibility of ∆σ1 > ∆σ2 in

the case of (γ0/ω)∆σ1/∆σ2 > 1, depending on the value of γ0/ω. As is shown in Fig. 5, if

we consider only K
(3)
DOS , ∆σ2 > ∆σ1 holds in the same way as the two-fluid model. When we

take account of K
(3)
V C , ∆σ1 can be predominant over ∆σ2. As can be seen from Figs. 2 and

4 ImK
(3)
V C takes values of the same order as ImK

(3)
DOS. On the other hand ReK

(3)
V C/ω takes

100 times larger values than ReK
(3)
DOS/ω. This difference originates from the following fact. It

can be shown that the term DRA ∝ 1/∆ω arises in real part of K
(3)
V C (this term is cut off by

the nonlocal effect which is mentioned below), but this term is canceled out in the imaginary

part. Therefore ∆σ1 is possible to be predominant over ∆σ2 and then 1/T -divergence can be
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originated from ∆σ1. This gives a solution to the contradiction between the experiments with

the nonlinear rf and dc field, which is not solved with the two-fluid model.

Here we mention some issues which are not discussed above. Strictly speaking in the case

of δ 6= π/2 the self-energy should be written as a matrix, Σ̂R(ε) = ΣR
0 (ε)τ̂0+ΣR

3 (ε)τ̂3. (ΣR
3 (ε) =

−Γicotδ/[cot
2δ −GR

0 (ε)2] and τ̂0 is a unit matrix.) In this paper we present the formula with

ΣR
3 (ε) → 0 because an intricate expression of K(3) appears and this gives almost the same

numerical results as those of ΣR
3 (ε) 6= 0. We presented numerical results of K(3) calculated with

original expressions (ΣR
3 (ε) 6= 0). The diamagnetic terms which include the factor ∂vk/∂kτ̂3

are omitted. This is because only the gap-full branch remains out of two branches in the

vertex correction D̂RA, which arise from the matrix structure in the superconducting state.

The nonlocal effect is not considered here. This effect also broadens the singular behavior of the

derivative of the density of states in the same way as the impurity-scattering effect does.9,14)

However the film used in the IMD experiments5) is nearly 4000Å, which is almost 100 times

thinner than that of the experiment with the nonlinear dc field.3) This is almost same order

of magnitude with λ. Therefore we omitted this effect here. (The numerical calculation of

the current distribution with various values of λ is given in ref.15)) We show only numerical

results with the impurity concentration Γi fixed. This is because our argument on K(3) can

be discussed similarly when Γi is varied. The different points are that the phase shift at which

1/T -divergence appears depends on Γi, and the absolute value of K(3) varies with Γi.

In our theory whether PIMD ∝ 1/T 2 or not depends on the value of the phase shift, which

is not known so far. As for the phase shift deviating from the unitary limit, however, there

are several discussions related to the low-temperature thermal conductivity which suggests

neither unitary nor Born limit16,17) In connection with the comparison between the real and

imaginary part of the nonlinear conductivity there is an experimental suggestion that ∆Rs
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is predominant over ∆Xs
18) though the temperature range is not where 1/T -divergence is

expected. One of the possible experiments which verify our theory is the third harmonic

generation. When ω1 = ω2 = ω3 the contribution from the vertex correction to ReK(3) is

reduced to the same order as ReK
(3)
DOS . Therefore it is expected that σ2 > σ1 holds and

1/T -divergence is cut off at low temperature.

In this paper we derived the general formalism of the nonlinear microwave conductivity

under the influence of nonmagnetic impurities. We evaluated this formula with the value of the

impurity-scattering phase shift varied. As the phase shift deviates from the unitary limit, the

nonlinear response shows 1/T -divergence owing to the dependence of the damping rate on the

energy. This is one of different points from previous theories where 1/T -divergence originates

from the second derivative of the density of states. The predominance of the resistive part over

the reactive part arises when the vertex correction is included. This term is not included in

the two-fluid model. Therefore the upturn of the IMD power at low temperature can originate

in the resistive part. This upturn does not need to be accompanied with 1/T -divergence in

the reactive part, and then this is a possible explanation to seemingly contradictory results

between the static and microwave experiments.

Numerical computation in this work was carried out at the Yukawa Institute Computer

Facility.
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