27 research outputs found

    In vitro activity of ivermectin against Staphylococcus aureus clinical isolates

    Get PDF
    Background Ivermectin is an endectocide against many parasites. Though being a macrocyclic lactone, its activity against bacteria has been less known, possibly due to the fact that micromolar concentrations at tissue levels are required to achieve a therapeutic effect. Among pathogenic bacteria of major medical significance, Staphylococcus aureus cause a number of diseases in a wide variety of hosts including humans and animals. It has been attributed as one of the most pathogenic organisms. The emergence of methicillin resistance has made the treatment of S. aureus even more difficult as it is now resistant to most of the available antibiotics. Thus, search for alternate anti-staphylococcal agents requires immediate attention. Methods Twenty-one clinical isolates of S. aureus were isolated from bovine milk collected from Lahore and Faisalabad Pakistan. Different anthelmintics including levamisole, albendazole and ivermectin were tested against S. aureus to determine their minimum inhibitory concentrations. This was followed-up by growth curve analysis, spot assay and time-kill kinetics. Results The results showed that ivermectin but not levamisole or albendazole exhibited a potent anti-staphylococcal activity at the concentrations of 6.25 and 12.5 μg/ml against two isolates. Interestingly, one of the isolate was sensitive while the other was resistant to methicillin/cefoxitin. Conclusions Our novel findings indicate that ivermectin has an anti-bacterial effect against certain S. aureus isolates. However, to comprehend why ivermectin did not inhibit the growth of all Staphylococci needs further investigation. Nevertheless, we have extended the broad range of known pharmacological effects of ivermectin. As pharmacology and toxicology of ivermectin are well known, its further development as an anti-staphylococcal agent is potentially appealing

    Molecular biomarkers of phospholipidosis in rat blood and heart after amiodarone treatment

    No full text
    Phospholipidosis (PLD) is characterized by an intracellular accumulation of phospholipids in lysosomes and concurrent development of concentric lamellar bodies. It is induced in humans and in animals by drugs with a cationic amphiphilic structure. The purpose of the present study was to identify a set of molecular biomarkers of PLD in rat blood and heart, hypothetically applicable in preclinical screens within the drug development process. A toxicological study was set up in rats orally treated up to 11 days with 300 mg/kg/day amiodarone (AMD). Light and transmission electronmicroscopy investigations were performed to confirm the presence of lamellar bodies indicative of phospholipid accumulation. The effects ofAMD upon the transcriptome of these tissues were estimated using DNA microarray technology. Microarray data analysis showed that a total of 545 and 8218 genes weremodulated byAMD treatment in heart and blood, respectively. Some genes implicated in the phospholipid accumulation in cells, such as phospholipase A2, showed similar alterations of gene expression. After transcriptome criteria of analysis and target selection, including also the involvement in the onset of PLD, 7 genes (Pla2g2a, Pla2g7, Gal, Il1b, Cebpb, Fcgr2b, Acer 2) were selected as candidate biomarkers of PLD in heart and blood tissues, and their potential usefulness as a sensitive screening test was screened and confirmed by quantitative Real-Time PCR analysis. Collectively, these data underscore the importance of transcriptional profiling in drug discovery and development, and suggest blood as a surrogate tissue for possible phospholipid accumulation in cardiomyocytes
    corecore