11 research outputs found

    One-pot synthesis of Bi-Ni nanowire and nanocable arrays by coelectrodeposition approach

    Get PDF
    A novel and convenient one-pot electrodeposition approach has been developed for precisely controlled fabrication of large-scale Bi-Ni nanowire and nanocable arrays. Using porous anodic aluminum oxide as a shape-directing template, by simply changing the electrochemical deposition mode, desired Bi-Ni hybrid nanowires and Bi-Ni core-shell nanocables have been obtained in the CV and CC modes, respectively. The structure, morphology, and composition of the as-prepared samples were characterized using X-ray powder diffraction, transmission electron microscopy, elemental mapping, and energy-dispersive X-ray spectrometry

    Large-scale fabrication of single crystalline tin nanowire arrays

    No full text
    Large-scale single crystalline tin nanowire arrays with preferred lattice orientation along the [100] direction were fabricated in porous anodic aluminium oxide (AAO) membranes by the electrodeposition method using copper nanorod as a second electrode

    Wet-Chemical Approaches to Porous Nanowires with Linear, Spiral, and Meshy Topologies

    No full text
    We report universal approaches for porous nanowires (NWs), and porous NWs with spiral and meshy topologies that have been developed via anodic aluminum oxide (AAO) confined wet-chemical synthesis. Materials such as CuO<sub><i>x</i></sub>, Pd, and Cu NWs are taken as examples for porous NWs and porous NWs with spiral and meshy topologies. Immediate benefits are demonstrated in hydrogen sensors as examples. We observed that hydrogen concentrations as low as 0.2% (v/v) were detected, that critical temperatures of the reverse sensing behavior as low as 239.9 K were measured and that better baseline-stability was confirmed compared with those fabricated with pure Pd NWs. Our approaches are anticipated to work on the synthesis of the porous NWs of other materials that could be obtained via wet-chemistry with potential as candidates for the next generation nanodevices (e.g., gas sensors) and other applications (e.g., catalysts)

    MoS2 Nanosheet Arrays Rooted on Hollow rGO Spheres as Bifunctional Hydrogen Evolution Catalyst and Supercapacitor Electrode

    No full text
    Abstract MoS2 has attracted attention as a promising hydrogen evolution reaction (HER) catalyst and a supercapacitor electrode material. However, its catalytic activity and capacitive performance are still hindered by its aggregation and poor intrinsic conductivity. Here, hollow rGO sphere-supported ultrathin MoS2 nanosheet arrays (h-rGO@MoS2) are constructed via a dual-template approach and employed as bifunctional HER catalyst and supercapacitor electrode material. Because of the expanded interlayer spacing in MoS2 nanosheets and more exposed electroactive S–Mo–S edges, the constructed h-rGO@MoS2 architectures exhibit enhanced HER performance. Furthermore, benefiting from the synergistic effect of the improved conductivity and boosted specific surface areas (144.9 m2 g−1, ca. 4.6-times that of pristine MoS2), the h-rGO@MoS2 architecture shows a high specific capacitance (238 F g−1 at a current density of 0.5 A g−1), excellent rate capacitance, and remarkable cycle stability. Our synthesis method may be extended to construct other vertically aligned hollow architectures, which may serve both as efficient HER catalysts and supercapacitor electrodes

    The Effects of Electoral Rules Upon Legislators’ Campaign Promises and Legislative Performance - A Comparison of Taiwan Legislative Yuan between its Sixth Term (2005-2008) and Seventh Term (2008-2012)

    No full text
    corecore