281 research outputs found

    Salt stress tolerance in cowpea is poorly related to the ability to cope with oxidative stress

    Get PDF
    We have previously demonstrated that salt tolerance in cowpea could be associated with lesser impairments of the photosynthetic capacity. Taking into account that photosynthesis is the main sink for reducing power consumption, our central working hypothesis is that a salt- sensitive cultivar is more prone to suffer from oxidative stress. We analyzed the long-term effects of salt stress on oxidative damage and protection against reactive oxygen species in both leaves and roots of a salt-tolerant (Pitiúba) and a salt-sensitive (TVu) cowpea cultivar. Two salt treatments (0 and 75 mM NaCl) were applied to 10-day-old plants grown in nutrient solution for 24 days. Significant salt-induced oxidative damage as demonstrated via increases in malondialdehyde concentration were noted, particularly in leaves at the end of the experiment, although such damage was found earlier in Pitiúba. In salt-stressed plants, superoxide dismutase (SOD) activity increased only in Pitiúba at 24 days from the start of salt additions (DSSA). In Pitiúba, catalase (CAT) was not significantly affected by the treatments, whereas in TVu its activity was dramatically lower in salt- tressed plants at 10DSSAonwards. In general salt stress led to significant increases, much more pronounced in ascorbate peroxidase (APX), glutathione reductase (GR) and guaiacol peroxidase (GPX), at the end of the experiment in both cultivars. In roots, salt-induced increases in enzyme activities were particularly noted at 24 DSSA, as found for SOD and APX in Pitiúba, CAT in TVu and GR and GPX in both cultivars. Therefore, in contrast to our expectations, the present results argue, to a great extent, against a functional link between salt stress tolerance and the expression of the antioxidant system. We also demonstrated that leaves and roots should be evaluated for a full assessment of whole plant acclimation to salt stress

    Functional analysis of the relative growth rate, chemical composition, construction and maintenance costs, and the payback time of Coffea arabica L. leaves in response to light and water availability

    Get PDF
    In this study, the combined effects of light and water availability on the functional relationships of the relative growth rate (RGR), leaf chemical composition, construction and maintenance costs, and benefits in terms of payback time for Coffea arabica are presented. Coffee plants were grown for 8 months in 100% or 15% full sunlight and then a four-month water shortage was implemented. Plants grown under full sunlight were also transferred to shade and vice versa. Overall, most of the traits assessed were much more responsive to the availability of light than to the water supply. Larger construction costs (12%), primarily associated with elevated phenol and alkaloid pools, were found under full sunlight. There was a positive correlation between these compounds and the RGR, the mass-based net carbon assimilation rate and the carbon isotope composition ratio, which, in turn, correlated negatively with the specific leaf area. The payback time was remarkably lower in the sun than in shade leaves and increased greatly in water-deprived plants. The differences in maintenance costs among the treatments were narrow, with no significant impact on the RGR, and there was no apparent trade-off in resource allocation between growth and defence. The current irradiance during leaf bud formation affected both the specific leaf area and leaf physiology upon transferring the plants from low to high light and vice versa. In summary, sun-grown plants fixed more carbon for growth and secondary metabolism, with the net effect of an increased RGR

    Transcriptomic leaf profiling reveals differential responses of the two most traded coffee species to elevated [co2]

    Get PDF
    PTDC/ASP-AGR/31257/2017 UIDB/00239/2020 UIDP/04035/2020 UID/AGR/04129/2020 UIDB/04551/2020 CRA-RED-00053-16As atmospheric [CO2] continues to rise to unprecedented levels, understanding its impact on plants is imperative to improve crop performance and sustainability under future climate conditions. In this context, transcriptional changes promoted by elevated CO2 (eCO2) were studied in genotypes from the two major traded coffee species: the allopolyploid Coffea arabica (Icatu) and its diploid parent, C. canephora (CL153). While Icatu expressed more genes than CL153, a higher number of differentially expressed genes were found in CL153 as a response to eCO2. Although many genes were found to be commonly expressed by the two genotypes under eCO2, unique genes and pathways differed between them, with CL153 showing more enriched GO terms and metabolic pathways than Icatu. Divergent functional categories and significantly enriched pathways were found in these genotypes, which altogether supports contrasting responses to eCO2. A considerable number of genes linked to coffee physiological and biochemical responses were found to be affected by eCO2 with the significant upregulation of photosynthetic, antioxidant, and lipidic genes. This supports the absence of photosynthesis down-regulation and, therefore, the maintenance of increased photosynthetic potential promoted by eCO2 in these coffee genotypes.publishersversionpublishe

    Superimposed impacts of enhanced [CO2] and high temperature on the photosynthetic metabolism of C. arabica and C. canephora genotypes.

    Get PDF
    Summary: Coffee crop has been predicted to become threatened by future climate changes and global warming conditions. Yet, the long-term effects of elevated [CO2] on this plant remain to be fully elucidated. In this context, this work aims at linking coffee biochemical responses to environmental changes of [CO2] and temperature on genotypes from the two major producing species, using the photosynthetic metabolism as probe to evaluate the plant acclimation ability. Potted plants from C. arabica cv. IPR 108 and of C. canephora cv. Conilon Clone 153 were grown under environmental controlled conditions, either at 380 or 700 ?L CO2 L-1 air, for 1 year, without water, nutrient or root development restrictions. After that the temperature was gradually increased from 25/20 ºC (day/night) up to 42/34 ºC. The effects of elevated [CO2] and enhanced temperature on the photosynthetic structures were assessed through the characterization of the lipid components of chloroplast membranes, whereas the leaf metabolic performance was evaluated through the thylakoid electron transport rates (involving both photosystem (PS) I and II), and the activities of enzymes (ribulose 1,5-biphosphate carboxylase/oxygenase and ribulose 5-phosphate kinase), as well as through stable isotopes of C and N. The activities of respiratory enzymes (NADH-dependent malate dehydrogenase and pyruvate kinase) were also analyzed. The results pointed for a higher functional status along the experiment in the plants grown under elevated [CO2], with special relevance at 37 and 42ºC in IPR108. These results could be related to the qualitative changes of the membrane lipid matrix that might have helped to preserve suitable membrane fluidity for the membrane bound events (e.g., thylakoid electron transport). The PSs and enzyme data reflect an enhancement of the energetic metabolism (both photosynthesis and respiration), mostly, until 31 ºC for IPR108 and 37 ºC for CL153 at normal [CO2]. Yet, under enhanced [CO2] it was found an increase in the temperature (to 37 ºC) at which maximal values of some parameters in IPR108 (MDH, PSs activities, RuBisCO) were observed, concomitantly with the maintenance of high performance in other parameters when compared to the 380 plants. Under the highest temperature (42 ºC) the enzymes were the most sensitive point, displaying the strongest reductions, irrespective of genotype and [CO2] treatments. The temperature promoted changes in leaf ?13C, irrespective of genotype and [CO2], reflecting a decrease in WUE with heat. The changes in ?15N values may indicate different limitation steps of N assimilation, requiring further investigation. It was concluded that the coffee plants grown under elevated [CO2] apparently showed a better endurance to high temperatures, what is quite relevant in a context of predicted climate changes and global warming scenarios

    A glimpse of climate change impact on C. Arabica L. and C. Canephora Pierre ex A. Froehner physiology: the combined effects of enhanced growth CO2 and temperature.

    Get PDF
    Summary: The effective impact of climate changes on the coffee plant physiology, promoted by enhanced air [CO2] and global warming remain to be fully elucidated through biological studies. Therefore, this work aims at linking important coffee physiological responses to environmental changes of enhanced growth [CO2] and temperature on genotypes from the two major producing species. Potted plants from C. arabica cv. IPR 108 and of C. canephora cv. Conilon Clone 153 were grown under environmental controlled conditions, either at 380 or 700 ?L CO2 L-1 air, for 1 year, without water, nutrient or root development restrictions. After that the temperature was gradually increased from 25/20 ºC (day/night) up to 42/34 ºC. The long-term impacts of enhanced growth [CO2] and enhanced temperature on the photosynthetic functioning were assessed at 25/20 ºC, 31/25 ºC, 37/30 ºC and 42/34 ºC, through leaf gas exchanges (rates of net photosynthesis, Pn, stomatal conductance, gs, transpiration, Tr, and photosynthetic capacity, Amax), instantaneous water use efficiency (iWUE), fluorescence parameters (photochemical efficiency of the photosystem II under dark, Fv/Fm, and light, Fv?/Fm?, conditions, as well as the photochemical, qP, and non-photochemical, NPQ, quenchings, and quantum yield of the linear electron transport, ?e), photosynthetic pigments (chlorophyll and carotenoids) and some molecules with antioxidant role (ascorbate and ?-tocopherol). The results showed that enhanced [CO2] stimulates photosynthetic functioning, without negative down-regulation. Minor impacts were found in the photochemical performance until 37 ºC, but extensive impacts were shown at 42 ºC, especially in IPR108. Remarkable was the finding that enhanced [CO2] preserved a higher functional status (Pn, Amax, Fo, Fv/Fm) at high temperatures (37 and 42 ºC), what seems quite relevant under the predicted climate changes and global warming scenarios

    Thylakoid lipids changes may account for photosynthetic acclimation ability of two coffea species subjected to heat.

    Get PDF
    Summary: Coffee is one of the world?s most traded agricultural products, and its production could be threatened by global warming. The aim of this work was to evaluate the effects of heat on photosynthetic activity and thylakoid membrane lipid dynamics, on genotypes of the two major coffee producing species. Potted plants from C. arabica L. cv. IPR108 and C. canephora Pierre Ex A. Froehner cv. Conilon Clone 153 were grown for 1 year under controlled conditions of temperature (25/20ºC, day/night), irradiance (650-800 ?mol m-2 s-1), RH (75%), photoperiod (12 h), and 380 ?L CO2 L-1. Thereafter, temperature was gradually raised to 42/34ºC (0.5ºC/ day), with a 7 days stabilization step at 31, 37 and 42ºC. Studies focused modifications of thylakoid lipid composition and photosynthetic performance. In CL153 photosynthetic capacity (Amax) was not affected until 42ºC (40% reduction). In IPR108 it was reduced 35 and 57% at 37ºC at 42ºC, respectively. Thylakoid electron transport rate for photosystems (PS) I and II increased (ca. 10-25%) up to 37ºC in both genotypes. At 42ºC only IPR108 presented depressed activities on PSII (15%) and PSI (18%). Under 37 and 42ºC, CL153 plants presented digalactosyldiacylglycerol (DGDG) (ca. 42%) and monogalactosyldiacylglycerol (MGDG) (28-34%) increases, while IPR108 showed higher MGDG at all temperatures. In CL153 less unsaturated DGDG and phosphatidylglycerol (PG) along with stable or increased DGDG/MGDG ratio, may have contributed to sustain thylakoid electron flow at 37ºC and even 42ºC. IPR108 displayed a strong PG rise at all temperatures, in accordance with enhanced PSs activity

    Rationales, rhetoric and realities:FIFA’s World Cup in South Africa 2010 and Brazil 2014

    Get PDF
    The 2010 FIFA World Cup was heralded by mainstream media outlets, the local organisers, the South African government and FIFA as an unequivocal success. The month-long spectacle saw South Africa take centre stage and host the world’s largest single sporting event. This occurred against a backdrop of rationales and promises made that the event would leave lasting legacies for all, in particular marginalised South Africans. The reality is quite different. In this article we consider the South African World Cup in the build up to Brazil 2014. We argue that the rationales and rhetoric are similar in both countries and suggest the reality for Brazil 2014 will be the same as South Africa 2010 in that the mega-event will be primarily funded by significant public investment, while the primary beneficiaries will be private capital and FIFA
    corecore