182 research outputs found

    A drug eluting poly(trimethylene carbonate)/poly(lactic acid)-reinforced nanocomposite for the functional delivery of osteogenic molecules

    Get PDF
    The authors acknowledge the funding provided by NSFC-DG-RTD Joint Scheme (Project No 51361130034), the RAPIDOS project under the European Union’s seventh Framework Programme (Project No 604517), and Dr Christoph Sprecher for his technical expertise on ED

    The effect of hexose ratios on metabolite production in Saccharomyces cerevisiae strains obtained from the spontaneous fermentation of mezcal

    Get PDF
    Mezcal from Tamaulipas (Me´xico) is produced by spontaneous alcoholic fermentation using Agave spp. musts, which are rich in fructose. In this study eight Saccharomyces cerevisiae isolates obtained at the final stage of fermentation from a traditional mezcal winery were analysed in three semisynthetic media. Medium M1 had a sugar content of 100 g l-1 and a glucose/fructose (G/F) of 9:1. Medium M2 had a sugar content of 100 g l-1 and a G/F of 1:9. Medium M3 had a sugar content of 200 g l-1 and a G/F of 1:1. In the three types of media tested, the highest ethanol yield was obtained from the glucophilic strain LCBG-3Y5, while strain LCBG-3Y8 was highly resistant to ethanol and the most fructophilic of the mezcal strains. Strain LCBG-3Y5 produced more glycerol (4.4 g l-1) and acetic acid (1 g l-1) in M2 than in M1 (1.7 and 0.5 g l-1, respectively), and the ethanol yields were higher for all strains in M1 except for LCBG-3Y5, -3Y8 and the Fermichamp strain. In medium M3, only the Fermichamp strain was able to fully consume the 100 g of fructose l-1 but left a residual 32 g of glucose l-1. Regarding the hexose transporters, a high number of amino acid polymorphisms were found in the Hxt1p sequences. Strain LCBG-3Y8 exhibited eight unique amino acid changes, followed by the Fermichamp strain with three changes. In Hxt3p, we observed nine amino acid polymorphisms unique for the Fermichamp strain and five unique changes for the mezcal strains

    Excessive TV viewing and cardiovascular disease risk factors in adolescents. The AVENA cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Excessive television (TV) viewing might play an important role in the development of cardiovascular disease (CVD). The aim of this study was to examine the independent associations between TV viewing and CVD risk factors in adolescents.</p> <p>Methods</p> <p>A sample of 425 adolescents, aged 13- to 18.5-year-old, was included in this study. Body mass index (BMI), waist circumference (WC), glucose, total cholesterol, triglycerides, HDL-cholesterol, LDL-cholesterol, apolipoprotein (apo) A-1, apo B-100, and lipoprotein(a) levels were determined. A composite CVD risk score was computed based on age-, sex-, sexual maturation- and race-standardized triglycerides, HDL-cholesterol, LDL-cholesterol and glucose. TV viewing was self-reported.</p> <p>Results</p> <p>Two hundred and twenty-five adolescents (53%) who spent >3 hrs/day watching TV were considered as the "high TV viewing" group. Ninety-nine adolescents (23%) from the total sample were classified as overweight according to International age- and sex-specific BMI values. The high TV viewing group had significantly less favorable values of HDL-cholesterol, glucose, apo A1 and CVD score, independent of age, sex, sexual maturation, race and weight status. There was a significant interaction effect of TV viewing × weight status (P = 0.002) on WC, and the negative influence of TV viewing on WC persisted in the overweight group (P = 0.031) but was attenuated in non-overweight adolescents (P > 0.05).</p> <p>Conclusion</p> <p>Excessive TV viewing seems to be related to an unfavorable CVD risk factors profile in adolescence. Reducing TV viewing in overweight adolescents might be beneficial to decrease abdominal body fat.</p

    Tissue stiffening coordinates morphogenesis by triggering collective cell migration in vivo.

    Get PDF
    Collective cell migration is essential for morphogenesis, tissue remodelling and cancer invasion. In vivo, groups of cells move in an orchestrated way through tissues. This movement involves mechanical as well as molecular interactions between cells and their environment. While the role of molecular signals in collective cell migration is comparatively well understood, how tissue mechanics influence collective cell migration in vivo remains unknown. Here we investigated the importance of mechanical cues in the collective migration of the Xenopus laevis neural crest cells, an embryonic cell population whose migratory behaviour has been likened to cancer invasion. We found that, during morphogenesis, the head mesoderm underlying the cephalic neural crest stiffens. This stiffening initiates an epithelial-to-mesenchymal transition in neural crest cells and triggers their collective migration. To detect changes in their mechanical environment, neural crest cells use mechanosensation mediated by the integrin-vinculin-talin complex. By performing mechanical and molecular manipulations, we show that mesoderm stiffening is necessary and sufficient to trigger neural crest migration. Finally, we demonstrate that convergent extension of the mesoderm, which starts during gastrulation, leads to increased mesoderm stiffness by increasing the cell density underneath the neural crest. These results show that convergent extension of the mesoderm has a role as a mechanical coordinator of morphogenesis, and reveal a link between two apparently unconnected processes-gastrulation and neural crest migration-via changes in tissue mechanics. Overall, we demonstrate that changes in substrate stiffness can trigger collective cell migration by promoting epithelial-to-mesenchymal transition in vivo. More broadly, our results raise the idea that tissue mechanics combines with molecular effectors to coordinate morphogenesis

    Spheroid-plug model as a tool to study tumor development, angiogenesis, and heterogeneity in vivo

    Get PDF
    Subcutaneous injection of the tumor cell suspension is a simple and commonly used tool for studying tumor development in vivo. However, subcutaneous models poorly resemble tumor complexity due to the fast growth not reflecting the natural course. Here, we describe an application of the new spheroid-plug model to combine the simplicity of subcutaneous injection with improved resemblance to natural tumor progression. Spheroid-plug model relies on in vitro formation of tumor spheroids, followed by injection of single tumor spheroid subcutaneously in Matrigel matrix. In spheroid-plug model, tumors grow slower in comparison to tumors formed by injection of cell suspension as assessed by 3D ultrasonography (USG) and in vivo bioluminescence measurements. The slower tumor growth rate in spheroid-plug model is accompanied by reduced necrosis. The spheroid-plug model ensures increased and more stable vascularization of tumor than classical subcutaneous tumor model as demonstrated by 3D USG Power Doppler examination. Flow cytometry analysis showed that tumors formed from spheroids have enhanced infiltration of endothelial cells as well as hematopoietic and progenitor cells with stem cell phenotype (c-Kit+ and Sca-1+). They also contain more tumor cells expressing cancer stem cell marker CXCR4. Here, we show that spheroid-plug model allows investigating efficiency of anticancer drugs. Treatment of spheroid-plug tumors with known antiangiogenic agent axitinib decreased their size and viability. The antiangiogenic activity of axitinib was higher in spheroid-plug model than in classical model. Our results indicate that spheroid-plug model imitates natural tumor growth and can become a valuable tool for cancer research

    H5N1 Whole-Virus Vaccine Induces Neutralizing Antibodies in Humans Which Are Protective in a Mouse Passive Transfer Model

    Get PDF
    BACKGROUND: Vero cell culture-derived whole-virus H5N1 vaccines have been extensively tested in clinical trials and consistently demonstrated to be safe and immunogenic; however, clinical efficacy is difficult to evaluate in the absence of wide-spread human disease. A lethal mouse model has been utilized which allows investigation of the protective efficacy of active vaccination or passive transfer of vaccine induced sera following lethal H5N1 challenge. METHODS: We used passive transfer of immune sera to investigate antibody-mediated protection elicited by a Vero cell-derived, non-adjuvanted inactivated whole-virus H5N1 vaccine. Mice were injected intravenously with H5N1 vaccine-induced rodent or human immune sera and subsequently challenged with a lethal dose of wild-type H5N1 virus. RESULTS: Passive transfer of H5N1 vaccine-induced mouse, guinea pig and human immune sera provided dose-dependent protection of recipient mice against lethal challenge with wild-type H5N1 virus. Protective dose fifty values for serum H5N1 neutralizing antibody titers were calculated to be ≤1∶11 for all immune sera, independently of source species. CONCLUSIONS: These data underpin the confidence that the Vero cell culture-derived, whole-virus H5N1 vaccine will be effective in a pandemic situation and support the use of neutralizing serum antibody titers as a correlate of protection for H5N1 vaccines

    Modulation of Brain β-Endorphin Concentration by the Specific Part of the Y Chromosome in Mice

    Get PDF
    International audienceBackground: Several studies in animal models suggest a possible effect of the specific part of the Y-chromosome (Y NPAR) on brain opioid, and more specifically on brain b-endorphin (BE). In humans, male prevalence is found in autistic disorder in which observation of abnormal peripheral or central BE levels are also reported. This suggests gender differences in BE associated with genetic factors and more precisely with Y NPAR. Methodology/Principal Findings: Brain BE levels and plasma testosterone concentrations were measured in two highly inbred strains of mice, NZB/BlNJ (N) and CBA/HGnc (H), and their consomic strains for the Y NPAR. An indirect effect of the Y NPAR on brain BE level via plasma testosterone was also tested by studying the correlation between brain BE concentration and plasma testosterone concentration in eleven highly inbred strains. There was a significant and major effect (P,0.0001) of the Y NPAR in interaction with the genetic background on brain BE levels. Effect size calculated using Cohen's procedure was large (56% of the total variance). The variations of BE levels were not correlated with plasma testosterone which was also dependent of the Y NPAR. Conclusions/Significance: The contribution of Y NPAR on brain BE concentration in interaction with the genetic background is the first demonstration of Y-chromosome mediated control of brain opioid. Given that none of the genes encompassed by the Y NPAR encodes for BE or its precursor, our results suggest a contribution of the sex-determining region (Sry, carried by Y NPAR) to brain BE concentration. Indeed, the transcription of the Melanocortin 2 receptor gene (Mc2R gene, identified as the proopiomelanocortin receptor gene) depends on the presence of Sry and BE is derived directly from proopiomelanocortin. The results shed light on the sex dependent differences in brain functioning and the role of Sry in the BE system might be related to the higher frequency of autistic disorder in males

    Isolation and Characterization of EstC, a New Cold-Active Esterase from Streptomyces coelicolor A3(2)

    Get PDF
    The genome sequence of Streptomyces coelicolor A3(2) contains more than 50 genes coding for putative lipolytic enzymes. Many studies have shown the capacity of this actinomycete to store important reserves of intracellular triacylglycerols in nutrient depletion situations. In the present study, we used genome mining of S. coelicolor to identify genes coding for putative, non-secreted esterases/lipases. Two genes were cloned and successfully overexpressed in E. coli as His-tagged fusion proteins. One of the recombinant enzymes, EstC, showed interesting cold-active esterase activity with a strong potential for the production of valuable esters. The purified enzyme displayed optimal activity at 35°C and was cold-active with retention of 25% relative activity at 10°C. Its optimal pH was 8.5–9 but the enzyme kept more than 75% of its maximal activity between pH 7.5 and 10. EstC also showed remarkable tolerance over a wide range of pH values, retaining almost full residual activity between pH 6–11. The enzyme was active toward short-chain p-nitrophenyl esters (C2–C12), displaying optimal activity with the valerate (C5) ester (kcat/Km = 737±77 s−1 mM−1). The enzyme was also very active toward short chain triglycerides such as triacetin (C2:0) and tributyrin (C4:0), in addition to showing good primary alcohol and organic solvent tolerance, suggesting it could function as an interesting candidate for organic synthesis of short-chain esters such as flavors

    Beyond the Evidence of the New Hypertension Guidelines. Blood pressure measurement – is it good enough for accurate diagnosis of hypertension? Time might be in, for a paradigm shift (I)

    Get PDF
    Despite widespread availability of a large body of evidence in the area of hypertension, the translation of that evidence into viable recommendations aimed at improving the quality of health care is very difficult, sometimes to the point of questionable acceptability and overall credibility of the guidelines advocating those recommendations. The scientific community world-wide and especially professionals interested in the topic of hypertension are witnessing currently an unprecedented debate over the issue of appropriateness of using different drugs/drug classes for the treatment of hypertension. An endless supply of recent and less recent "drug-news", some in support of, others against the current guidelines, justifying the use of selected types of drug treatment or criticising other, are coming out in the scientific literature on an almost weekly basis. The latest of such debate (at the time of writing this paper) pertains the safety profile of ARBs vs ACE inhibitors. To great extent, the factual situation has been fuelled by the new hypertension guidelines (different for USA, Europe, New Zeeland and UK) through, apparently small inconsistencies and conflicting messages, that might have generated substantial and perpetuating confusion among both prescribing physicians and their patients, regardless of their country of origin. The overwhelming message conveyed by most guidelines and opinion leaders is the widespread use of diuretics as first-line agents in all patients with blood pressure above a certain cut-off level and the increasingly aggressive approach towards diagnosis and treatment of hypertension. This, apparently well-justified, logical and easily comprehensible message is unfortunately miss-obeyed by most physicians, on both parts of the Atlantic. Amazingly, the message assumes a universal simplicity of both diagnosis and treatment of hypertension, while ignoring several hypertension-specific variables, commonly known to have high level of complexity, such as: - accuracy of recorded blood pressure and the great inter-observer variability, - diversity in the competency and training of diagnosing physician, - individual patient/disease profile with highly subjective preferences, - difficulty in reaching consensus among opinion leaders, - pharmaceutical industry's influence, and, nonetheless, - the large variability in the efficacy and safety of the antihypertensive drugs. The present 2-series article attempts to identify and review possible causes that might have, at least in part, generated the current healthcare anachronism (I); to highlight the current trend to account for the uncertainties related to the fixed blood pressure cut-off point and the possible solutions to improve accuracy of diagnosis and treatment of hypertension (II)

    Frequency fluctuations in silicon nanoresonators

    Get PDF
    Frequency stability is key to performance of nanoresonators. This stability is thought to reach a limit with the resonator's ability to resolve thermally-induced vibrations. Although measurements and predictions of resonator stability usually disregard fluctuations in the mechanical frequency response, these fluctuations have recently attracted considerable theoretical interest. However, their existence is very difficult to demonstrate experimentally. Here, through a literature review, we show that all studies of frequency stability report values several orders of magnitude larger than the limit imposed by thermomechanical noise. We studied a monocrystalline silicon nanoresonator at room temperature, and found a similar discrepancy. We propose a new method to show this was due to the presence of frequency fluctuations, of unexpected level. The fluctuations were not due to the instrumentation system, or to any other of the known sources investigated. These results challenge our current understanding of frequency fluctuations and call for a change in practices
    corecore