214 research outputs found

    Modeling recursive RNA interference.

    Get PDF
    An important application of the RNA interference (RNAi) pathway is its use as a small RNA-based regulatory system commonly exploited to suppress expression of target genes to test their function in vivo. In several published experiments, RNAi has been used to inactivate components of the RNAi pathway itself, a procedure termed recursive RNAi in this report. The theoretical basis of recursive RNAi is unclear since the procedure could potentially be self-defeating, and in practice the effectiveness of recursive RNAi in published experiments is highly variable. A mathematical model for recursive RNAi was developed and used to investigate the range of conditions under which the procedure should be effective. The model predicts that the effectiveness of recursive RNAi is strongly dependent on the efficacy of RNAi at knocking down target gene expression. This efficacy is known to vary highly between different cell types, and comparison of the model predictions to published experimental data suggests that variation in RNAi efficacy may be the main cause of discrepancies between published recursive RNAi experiments in different organisms. The model suggests potential ways to optimize the effectiveness of recursive RNAi both for screening of RNAi components as well as for improved temporal control of gene expression in switch off-switch on experiments

    From bit to it: How a complex metabolic network transforms information into living matter

    Get PDF
    Organisms live and die by the amount of information they acquire about their environment. The systems analysis of complex metabolic networks allows us to ask how such information translates into fitness. A metabolic network transforms nutrients into biomass. The better it uses information on available nutrient availability, the faster it will allow a cell to divide. I here use metabolic flux balance analysis to show that the accuracy I (in bits) with which a yeast cell can sense a limiting nutrient's availability relates logarithmically to fitness as indicated by biomass yield and cell division rate. For microbes like yeast, natural selection can resolve fitness differences of genetic variants smaller than 10-6, meaning that cells would need to estimate nutrient concentrations to very high accuracy (greater than 22 bits) to ensure optimal growth. I argue that such accuracies are not achievable in practice. Natural selection may thus face fundamental limitations in maximizing the information processing capacity of cells. The analysis of metabolic networks opens a door to understanding cellular biology from a quantitative, information-theoretic perspective

    The dynamics and efficacy of antiviral RNA silencing: A model study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mathematical modeling is important to provide insight in the complicated pathway of RNA silencing. RNA silencing is an RNA based mechanism that is widely used by eukaryotes to fight viruses, and to control gene expression.</p> <p>Results</p> <p>We here present the first mathematical model that combines viral growth with RNA silencing. The model involves a plus-strand RNA virus that replicates through a double-strand RNA intermediate. The model of the RNA silencing pathway consists of cleavage of viral RNA into siRNA by Dicer, target cleavage of viral RNA via the RISC complex, and a secondary response. We found that, depending on the strength of the silencing response, different viral growth patterns can occur. Silencing can decrease viral growth, cause oscillations, or clear the virus completely. Our model can explain various observed phenomena, even when they seem contradictory at first: the diverse responses to the removal of RNA dependent RNA polymerase; different viral growth curves; and the great diversity in observed siRNA ratios.</p> <p>Conclusion</p> <p>The model presented here is an important step in the understanding of the natural functioning of RNA silencing in viral infections.</p

    Total and High Molecular Weight Adiponectin and Hepatocellular Carcinoma with HCV Infection

    Get PDF
    Adiponectin is shown to be inversely associated with development and progression of various cancers. We evaluated whether adiponectin level was associated with the prevalence and histological grade of hepatocellular carcinoma (HCC), and liver fibrosis in patients with hepatitis C virus (HCV) infection.A case-control study was conducted on 97 HCC patients (cases) and 97 patients (controls) matched for sex, Child-Pugh grade and platelet count in patients with HCV infection. The serum total and high molecular weight (HMW) adiponectin levels were measured by enzyme-linked immunosorbent assays and examined in their association with the prevalence of HCC. In addition, the relationship between these adiponectin levels and body mass index (BMI), progression of liver fibrosis, and histological grade of HCC was also evaluated. Liver fibrosis was assessed using the aspartate aminotransferase to platelet ratio index (APRI).There were no significant differences in the serum total and HMW adiponectin levels between cases and controls. Moreover, there were no inverse associations between serum total and HMW adiponectin levels and BMI in both cases and controls. On the other hand, serum total and HMW adiponectin levels are positively correlated with APRI in both cases (r = 0.491, P<0.001 and r = 0.485, P<0.001, respectively) and controls (r = 0.482, P<0.001 and r = 0.476, P<0.001, respectively). Interestingly, lower serum total (OR 11.76, 95% CI: 2.97–46.66 [P<0.001]) and HMW (OR 10.24, CI: 2.80–37.40 [P<0.001] adiponectin levels were independent risk factors of worse histological grade of HCC.Our results suggested that serum total and HMW adiponectin levels were predictors of liver fibrosis, but not prevalence of HCC in patients with HCV infection. Moreover, low these adiponectin levels were significantly associated with worse histological grades

    The use of bibliometrics for assessing research : possibilities, limitations and adverse effects

    Get PDF
    Researchers are used to being evaluated: publications, hiring, tenure and funding decisions are all based on the evaluation of research. Traditionally, this evaluation relied on judgement of peers but, in the light of limited resources and increased bureaucratization of science, peer review is getting more and more replaced or complemented with bibliometric methods. Central to the introduction of bibliometrics in research evaluation was the creation of the Science Citation Index (SCI)in the 1960s, a citation database initially developed for the retrieval of scientific information. Embedded in this database was the Impact Factor, first used as a tool for the selection of journals to cover in the SCI, which then became a synonym for journal quality and academic prestige. Over the last 10 years, this indicator became powerful enough to influence researchers’ publication patterns in so far as it became one of the most important criteria to select a publication venue. Regardless of its many flaws as a journal metric and its inadequacy as a predictor of citations on the paper level, it became the go-to indicator of research quality and was used and misused by authors, editors, publishers and research policy makers alike. The h-index, introduced as an indicator of both output and impact combined in one simple number, has experienced a similar fate, mainly due to simplicity and availability. Despite their massive use, these measures are too simple to capture the complexity and multiple dimensions of research output and impact. This chapter provides an overview of bibliometric methods, from the development of citation indexing as a tool for information retrieval to its application in research evaluation, and discusses their misuse and effects on researchers’ scholarly communication behavior

    Oxidative Stress Mediates Physiological Costs of Begging in Magpie (Pica pica) Nestlings

    Get PDF
    [Background] Theoretical models predict that a cost is necessary to guarantee honesty in begging displays given by offspring to solicit food from their parents. There is evidence for begging costs in the form of a reduced growth rate and immunocompetence. Moreover, begging implies vigorous physical activity and attentiveness, which should increase metabolism and thus the releasing of pro-oxidant substances. Consequently, we predict that soliciting offspring incur a cost in terms of oxidative stress, and growth rate and immune response (processes that generate pro-oxidants substances) are reduced in order to maintain oxidative balance. [Methodology/Principal Findings] We test whether magpie (Pica pica) nestlings incur a cost in terms of oxidative stress when experimentally forced to beg intensively, and whether oxidative balance is maintained by reducing growth rate and immune response. Our results show that begging provokes oxidative stress, and that nestlings begging for longer bouts reduce growth and immune response, thereby maintaining their oxidative status. [Conclusions/Significance] These findings help explaining the physiological link between begging and its associated growth and immunocompetence costs, which seems to be mediated by oxidative stress. Our study is a unique example of the complex relationships between the intensity of a communicative display (begging), oxidative stress, and life-history traits directly linked to viability.GM-R was supported by the Spanish Government (Ministerio de Ciencia y Tecnología, “Juan de la Cierva” program), and TR was supported by the Consejo Superior de Investigaciones Científicas (CSIC; Proyectos Intramurales Especiales)

    A Role for Non-Antimicrobial Actions of Tetracyclines in Combating Oxidative Stress in Periodontal and Metabolic Diseases: A Literature Review

    Get PDF
    This review addresses the role of adjunctive tetracycline therapy in the management of periodontal diseases and its efficacy in reducing inflammatory burden, oxidative stress and its sequelae in patients with coexisting features of metabolic syndrome. Removal of the dimethylamine group at C4 of the tetracycline molecule reduces its antibiotic properties, enhancing its non-antimicrobial actions; this strategy has aided the development of several chemically modified tetracyclines such as minocycline and doxycycline, by altering different regions of the molecule for focused action on biological targets. Tetracyclines are effective in reducing inflammation by inhibiting matrix metalloproteinases, preventing excessive angiogenesis, inhibiting apoptosis and stimulating bone formation. There are important applications for tetracyclines in the management of diabetic, dyslipidaemic periodontal patients who smoke. The diverse mechanisms of action of tetracyclines in overcoming oxidative stress and enhancing matrix synthesis are discussed in this review

    Guiding principles for the development and application of solid-phase phosphorus adsorbents for freshwater ecosystems

    Get PDF
    While a diverse array of phosphorus (P)-adsorbent materials is currently available for application to freshwater aquatic systems, selection of the most appropriate P-adsorbents remains problematic. In particular, there has to be a close correspondence between attributes of the P-adsorbent, its field performance, and the management goals for treatment. These management goals may vary from a rapid reduction in dissolved P to address seasonal enrichments from internal loading, targeting external fluxes due to anthropogenic sources, or long term inactivation of internal P inventories contained within bottom sediments. It also remains a challenge to develop new methods and materials that are ecologically benign and cost-effective. We draw on evidence in the literature and the authors’ personal experiences in the field, to summarise the attributes of a range of P-adsorbent materials. We offer 'guiding principles' to support practical use of existing materials and outline key development needs for new materials
    corecore