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Abstract 21 

While a diverse array of phosphorus (P)-adsorbent materials is currently available for application to 22 

freshwater aquatic systems, selection of the most appropriate P-adsorbents remains problematic. In 23 

particular, there has to be a close correspondence between attributes of the P-adsorbent, its field 24 

performance, and the management goals for treatment. These management goals may vary from a 25 

rapid reduction in dissolved P to address seasonal enrichments from internal loading, targeting 26 

external fluxes due to anthropogenic sources, or long term inactivation of internal P inventories 27 

contained within bottom sediments. It also remains a challenge to develop new methods and materials 28 

that are ecologically benign and cost-effective. We draw on evidence in the literature and the authors’ 29 

personal experiences in the field, to summarise the attributes of a range of P-adsorbent materials. We 30 

offer ‘guiding principles’ to support practical use of existing materials and outline key development 31 

needs for new materials.  32 

 33 
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1. Introduction 38 

Persistent eutrophication is a response to nutrient enrichment that often arises from anthropogenic 39 

modifications to catchments of freshwater systems (Smith 2003; Oliveira and Machado 2013; 40 

Zamparas and Zacharias 2014). The deleterious effects of eutrophication may include: changes in 41 

phytoplankton community structure, often leading to blooms of toxin-producing species, loss of 42 

aquatic habitat, fish kills, large releases of phosphorus (P)from bed sediments associated with anoxia, 43 

degradation of water quality, and loss of visual and social amenity (e.g. Nikolai and Dzialowski2014).   44 

There is vigorous debate about the role of nitrogen (N) and P in limiting phytoplankton biomass in 45 

order to control eutrophication in freshwater systems. In the context of the applications of P adsorbent 46 

materials we provide a brief overview of this debate. Schindler et al. (2008) used a 37-year study on 47 

Lake 227 (Ontario, Canada) to conclude that P reduction should be the focus of efforts to manage 48 

eutrophication. The central tenet of their argument was that N fixation by cyanobacteria made up for 49 

N deficits at the system (lake) scale.Several subsequent publications have reinforced this viewpoint 50 

(Schindler 2008; Carpenter 2008; Patterson et al. 2011; Schindler 2012). Alternatively, Scott and 51 

McCarthy (2011) disputed the analysis of data that led to the original conclusions of Schindler et al. 52 

(2008) and a number of authors present arguments that N deficits are not necessarily compensated for 53 

by N-fixing cyanobacteria in eutrophic systems (e.g., Howarth and Paerl 2008; Conley et al. 2009). 54 

The proliferation of N-fixing cyanobacteria is often associated with the presence of anoxia in bottom 55 

waters, which enhances both P release from bottom sediments and N losses from denitrification (e.g., 56 

Downing and McCauley 1992, Dodds et al. 2002; Smith 2003; Ma et al. 2015), resulting in low water 57 

column N:P ratios (e.g. Bergstrom et al. 2015). 58 

What is clear is that effective eutrophication management demands that both external supply as well 59 

as internally stored nutrients be tackled (Cooke et al. 2005). The latter has been most effectively 60 

achieved by the application of P adsorbent materials. In many cases phytoplankton growth limitation 61 

cannot be attributed solely to one nutrient, and co-limitation or switches in the limiting nutrient have 62 

been observed amongst different phytoplankton assemblages (e.g. Burger et al. 2007; Muller and 63 

Mitrovic 2014), over time scales such as seasons (Muhid and Burford 2012; Kolzau et al. 2014; 64 

http://www.sciencedirect.com/science/article/pii/S0160412006000602#bib65
http://www.sciencedirect.com/science/article/pii/S0160412006000602#bib207
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Trochine et al. 2014, Xu et al. 2015) or with location within a single system (Abell et al. 2014). Here 65 

we recall Liebig’s barrel – a barrel illustration published in 1903 by Hans Arnold von Dobeneck – 66 

which visualizes that once the limitation of one element is lifted, another element becomes limiting 67 

(Gröger 2010). Indeed, it is obvious that dual N and P enrichment can boost phytoplankton biomass 68 

more than only single N or P addition. Put simply, all elements are needed in abundance to supply the 69 

building blocks necessary for sustaining phytoplankton production. If stores remain sufficiently 70 

elevated for a period of time, the consequence will be eutrophication. It is not necessary to control all 71 

the nutrients that are in abundance. In fact, it is efficient to control only one element to prevent 72 

excessive phytoplankton proliferation and blooms. Mitigation aimed at the external nutrient supply, 73 

unfortunately, may not be especially effective in the short-term because of the need to mitigate 74 

legacies of nutrients in the bottom sediments.  75 

In many cases, internal loading of nutrients from bottom sediments may be sufficient to support 76 

elevated phytoplankton biomass and delay return to an earlier pre-eutrophication state (Marsden 1989; 77 

Jeppensen et al. 2005). The nutrient inventory contained within bottom sediments can be substantial, 78 

and a sustained reduction in nutrients derived from both internal and external loading, is generally 79 

required, irrespective of seasonal or persistent N, P or N+P limitation. Xu et al. (2015) suggest that 80 

reducing nutrients to below a threshold concentration can still be cost-effective and manageable even 81 

when it may not be possible to restore a system to its pre-human-impact status (i.e. reference state) 82 

because of such legacies. Specifically, they claim that “61−71% TN and 20−46% TP reduction are 83 

necessary to bring [Lake] Taihu’s phytoplankton biomass to “acceptable” sub-bloom conditions of 84 

less than 20 μg L−1 chlorophyll-a”. Such reductions are already challenging in themselves, but in 2009 85 

atmospheric N deposition in Jiangsu province (where Taihu is located) was 4890 kg N km-2 year-1 86 

(Han et al. 2014). Consequently, the 11,000 tonnes N year-1 from atmospheric deposition is substantial 87 

in relation to the estimated 46,000 tonnes N year-1derived from river inflows (Xu et al. 2015). 88 

Therefore, it seems highly unlikely that the suggested N load reduction can be realized. In contrast, P 89 

control may be more feasible. The bioavailability of P can be reduced to a point where it limits algal 90 

growth (Douglas et al.in press; Waajen et al.in press). This inactivation can be accomplished through 91 
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formation of salts with varying degrees of solubility, including with aluminium, calcium, iron, 92 

lanthanum or other metals, while such immobilization for nitrogen is generally not possible. Also, 93 

based on its relative abundance in phytoplankton and in water, P-reduction is the single logical target; 94 

the Redfield ratio (P:N:C is 1:16: 106) shows that P limitation is likely to be stoichiometrically the 95 

most efficient mechanism to achieve limitation as ratios of P:C in the water are generally considerably 96 

lower than the Redfield ratio. 97 

Addressing P legacies is critical (e.g., Jarvie et al. 2014), and could be aided by the development of a 98 

“tool box” of complimentary nutrient mitigation or intervention strategies. A major component of this 99 

tool box may be the use of solid-phase P-adsorptive1or flocculation materials to reduce bioavailable P 100 

concentrations, either directly in the water column or indirectly via reductions in P release from the 101 

bottom sediments to the overlying water. Use of P-adsorptive materials is one of the commonly 102 

deployed ‘geoengineering’ approaches (sensu MacKay et al. 2014) to manage internal nutrient 103 

loading. In this review we examine current applications of a range of solid-phase P-adsorptive 104 

materials and discuss guiding principles for their development and application in freshwater 105 

ecosystems. We acknowledge the development of these materials is rapid and will therefore not 106 

provide a complete coverage of all P-adsorptive materials. Instead we focus on those with an 107 

established body of laboratory and/or field based evidence.   108 

Over the past 50 years, a range of amendments has been applied to freshwater aquatic systems in an 109 

attempt to manage internal Ploading on an intra- to inter-annual basis (Douglas et al. 2004).  Initially, 110 

dissolved chemical reagents were directly applied to a waterbody, and most commonly included alum 111 

or Al-containing compounds and nitrate-containing compounds that are briefly discussed here as a 112 

prelude to the discussion on solid P-adsorbents. 113 

                                                           
1 For consistency we have used the term “P-adsorptive” throughout to describe P-uptake, however, it is 

recognised that many materials may be either P-adsorbents (surface complexation/binding or precipitation) or P-

absorbents (internal/intra-particle binding), or a combination thereof when more than one mechanism is 

operative.  It is also recognised that the nature of P-uptake and occupancy/speciation, particle size or association 

may change over time (e.g. due to processes such as internal diffusion, crystal overgrowths or Ostwald 

ripening).  
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The use of alum to reduce concentrations of soluble phosphorus in aquatic systems appears to have 114 

been first suggested by Lund (1955), with the first documented application occurring in a Swedish 115 

lake (Jernelov 1971). Since that time alum or similar aluminium based amendments (e.g. aluminium 116 

hydroxide, Browmanet al. 1977) have been applied to a number of aquatic systems, in particular lakes 117 

in North America (e.g. Cooke and Welch 1993) in an attempt to control both algal and macrophyte 118 

biomass (e.g. Haumann and Waite 1978;Wolter 1994). These applications continue in both Europe 119 

and North America despite concerns over toxicity associated with either the application or the re-120 

release of applied Al (Reitzel et al. 2013) or changes in ecosystem function (e.g. Nogaro et al. 2013).  121 

An alternative to alum has been the use of nitrate salts, most often ferric nitrate or calcium nitrate 122 

injected into bottom sediments to increase redox status (via nitrate) and provide P-binding metal 123 

cations (Fe or Ca). This technique was initially developed in the mid 1970s (Ripl, 1976, 1994; Ripl 124 

and Lindward 1978) as a method to oxidise the upper layers of bottom sediments using calcium 125 

nitrate.  The calcium nitrate injection technique which is also known under various commercial names 126 

e.g. 'Riplox' (Europe) and 'Limnofix' (North America), has been applied to a number of lakes, 127 

particularly in Europe (e.g. Bjork 1988; Søndergaard et al. 2000; Yamada et al. 2012) with varying 128 

degrees of success.   129 

 130 

2. A brief review of P-adsorptive materials for application in freshwater aquatic systems 131 

Several studies document different P-adsorptive materials and techniques that may be used to bind P 132 

in the water column or to intercept the P that might arise from internal loading, or scavenge dissolved 133 

P from the water column (e.g. Robb et al.2003; Douglas et al. 2004; Egemose et al. 2010, Gibbs et al. 134 

2011, Pan et al.2012; Spears et al. 2013). In general, P-adsorptive materials applied in standing 135 

waters, including constructed wetlands, can be divided into four categories (Table 1, modified after 136 

Douglas et al. 2004): 137 

 naturally occurring minerals, soils, suspended particles or earth materials; 138 

 natural or synthetically produced materials; 139 

http://www.tandfonline.com/author/S%C3%B8ndergaard%2C+M
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 modified clay mineral or soils; and 140 

 mining, mineral processing and industrial by-products. 141 

Most P adsorbents with substantial uptake capacity are generally enriched in Ca, Fe and/or Al or a 142 

combination thereof, however, it has also been demonstrated that rare earth elements, in particular 143 

lanthanum (La), the most abundant, non-redox-sensitive rare earth element, may also form strong 144 

associations with P (Firsching and Brune, 1991; Douglas 1997, 2002; Robb et al. 2002; Yuan et al. 145 

2009). In the last decade, and nearly 20 years after the development of La-modified bentonite for P 146 

adsorption, a large number of studies have sought to exploit the utility of La-modified materials or La-147 

bearing compounds to remove P from natural aquatic ecosystems (Table 1).  148 

Interactions of Ca, Fe, Al or La-bearing materials with P may involve a number of geochemical 149 

associations. These include the formation of discrete secondary minerals, ion exchange via surface 150 

adsorption, internal ion exchange, or the formation of less well-defined associations such as complex 151 

multi-component surface adsorption or precipitation processes (e.g. Booker et al., 1999; Douglas et al. 152 

2004). Many of these associations may also change over time due to diffusion or recrystallization. 153 

Confounding the uptake of P, however, may be the presence of interfering species including simple 154 

(e.g. carbonate) or complex polyelectrolyte anions (e.g. dissolved organic carbon). A detailed 155 

summary (modified after Douglas et al. 2004) of the four main groups of P-adsorbent materials is 156 

given below and in Table 1.  157 

2.1. Naturally occurring minerals, soils, suspended particles or earth materials  158 

2.1.1 Carbonates 159 

A range of carbonates including limestone, dolomite and magnesite has been investigated for the 160 

uptake of P from natural and wastewaters (Shilton et al.2005; Karaca et al.2006; Mateus et al. 2012; 161 

Jaouadi et al. 2013; Xu et al. 2014).  As a consequence, carbonates or lime have been extensively 162 

tested in the removal of soluble P from both natural (e.g. rivers: Jack and Platell 1983; Futaedaniet et 163 

al. 1992, lakes or other impoundments: Prepaset et al. 1990) and waste waters (e.g. piggery effluents: 164 

Takeuchi and Komada 1998), stormwaters (Babinet al. 1989), soils (Anderson et al. 1995), and 165 
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wetlands (Drizoet et al. 1999; Arias et al 2000; Vohla et al. 2011; Mateus et al. 2012). In addition to 166 

carbonate, calcined derivatives such as partially calcined dolomite (Roques et al. 1991) and granular 167 

magnesia clinker (Kaneko and Nakajima 1998; Suzuki and Fuji 1988) and calcined magnesia 168 

(Wendling et al. 2012) have also been assessed as substrates for P removal.  169 

2.1.2 Soils, sands and suspended particles 170 

Phosphorus adsorption to soils, particularly in an agricultural context, has been the subject of 171 

extensive research for a number decades (Bray and Kurtz 1945; Barrow 1970, 1999), however, a 172 

more recent focus has been on the utilisation of these material to remove dissolved P from natural 173 

and wastewaters (Arias et al. 2000; Degens et al. 2000; Kim et al. 2014; Dai and Pan 2014: Pan et al. 174 

2002, 2013). A range of P uptake capacities reflect the mineralogical and physico-chemical 175 

heterogeneity of the soils used. The most adsorptive soils are generally enriched in one or more of 176 

Ca-, Fe- or Al- bearing mineral phases. Arias et al. (2000) concluded that Ca was the most important 177 

parameter in determining P uptake by sands, presumably due to the precipitation of calcium P phases 178 

including apatite, however, under more moderately acidic conditions Fe and Al were also important 179 

in P-uptake and precipitation reactions. More recently, chitosan-modified soils or cationic starch 180 

modified soils have been investigated, although the focus has been on the flocculation of 181 

cyanobacteria (and P contained therein) in lakes (Pan et al. 2006, 2011; Shi et al., 2015). However, it 182 

is likely that these chitosan-modified soils may also simultaneously remove substantial P (e.g. Chung 183 

et al. 2005; Dai et al. 2011). A similar study focusing on the removal of cyanobacteria using 184 

polyaluminium chloride (PAC) or chitosan and a red soil collected on the banks of a eutrophic 185 

reservoir in Brazil showed P adsorption maxima of 3.0 mg P g-1soil under oxic and 0.5 mg g-1under 186 

anoxic conditions in ultrapure water (Noyma et al. 2015). 187 

2.2. Natural or synthetically-produced materials  188 

2.2.1. Allophane and imogolite 189 

Both allophane and imogolite occur in nature as secondary aluminosilicate minerals in soils (e.g. 190 

Farmer and Russell 1990; Barrealet al. 2001; Moro et al. 2015) and can also be synthetically 191 
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produced (Wada 1989; Denaixet al. 1999). A high P-uptake capacity for allophane and imogolite has 192 

been demonstrated in laboratory studies. Uptake can vary strongly as both a function of pH and 193 

salinity. Optimal P-uptake is typically near pH6 while above pH9 P-uptake is minimal, with cation 194 

uptake (e.g. Na, Ca) the predominant reaction (e.g. Wada 1959; 1980) as a result in changes in 195 

surface charge with pH. Studies of the plant availability of P adsorbed to allophane suggest that the 196 

initially adsorbed P, or that bound for an extended period, might not be bioavailable, although later-197 

bound P may become available (Parfitt et al. 1982, 1989). The ability of allophanic soils to retain P 198 

has been documented by Degenset al. (2000). This study revealed that 91% of the P in a dairy 199 

effluent applied to allophanic soils (ca. 1-12% allophane) over a period of 22 years was retained in a 200 

75cm depth profile, with 81% retained within the upper 25cm.  201 

2.2.2. Fe-Al (oxy)hydroxides 202 

Numerous studies over many decades have documented the adsorption of P to both Fe- and Al-oxides 203 

and (oxy)hydroxides in soils and sediments (Parfitt 1989; Goundaret al. 2014; Bakenet al. 2015) and 204 

synthetically prepared materials (McLaughlin et al. 1981, Borggaard 1983, 1990). Some Fe- and Al-205 

oxides may also form a solid solution series such as Al in goethite, or amorphous oxides. In light of 206 

this often close association of Fe and Al in nature, their mineralogical similarity and their common 207 

evaluation as P adsorbents, Fe- and Al-oxides and oxyhydroxides are discussed together. The most 208 

common Fe-oxides that occur in soils are goethite and ferrihydriteand both may contain significant 209 

concentrations of other elements such as Al and Si, respectively. Many other types of oxide may also 210 

occur in nature and as part of industrial wastes such as haematite and magnetite, which have a range 211 

of P uptake capacities. Gibbsite is the most widely occurring Al-oxide in soils and bauxite deposits 212 

(Hsu 1989). Studies of Fe- and Al-oxides in soils suggest that P is predominantly associated with Fe-213 

oxides at concentrations 4-20 times greater than that of Al-oxides (Norrish and Rosser 1983). In 214 

contrast, comparative studies of the adsorption of P on synthetic Fe- and Al-oxides consistently 215 

indicate that Al-oxides have a substantially higher P uptake capacity (e.g.Borggaard 1983). An 216 

approximate order of P adsorption to Fe- and Al-oxide minerals is Al-gel > Fe-gel >>, haematite, 217 

goethite, magnetite > gibbsite. This order of P adsorption may also be dependent on factors such as 218 
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particle size, age, drying, degree of crystallinity of particular minerals and pH, ionic strength, the 219 

period of P adsorption and initial P concentration (e.g. Bolan et al. 1986). Iron oxides derived from 220 

industrial processes such as the Bayer process (red mud) and mineral sand processing have also been 221 

evaluated as P adsorbents (e.g. Douglas et al. 2012; Wendling et al. 2012, 2013).  222 

Hydrotalcites 223 

Hydrotalcites are layered double hydroxides most commonly formed by the co-precipitation of 224 

divalent (e.g. Mg2+, Fe2+) and trivalent (Al3+, Fe3+) metal cation solutions at high pH (Taylor 1984; 225 

Vucelic et al. 1997; Shin et al. 1996). Hydrotalcites occur naturally as accessory minerals in soils and 226 

sediments, but may also be synthesised such as from industrial waste materials by the reaction of 227 

bauxite residue (red mud) with seawater (e.g. Thornber and Hughes 1987), by the reaction of lime 228 

with fly ash (e.g. Reardon and Della Valle 1997) or from wastewaters (Douglas 2014). A number of 229 

studies have been conducted to investigate ways to exploit the anion exchange properties of 230 

hydrotalcites. These studies have focussed on the removal of P and other oxyanions and humic 231 

substances from natural and wastewaters (Miyata 1980; Misra and Perrotta 1992; Shin et al. 1996; 232 

Seida and Nakano 2000). A major obstacle to the use of hydrotalcites for P removal in natural and/or 233 

wastewaters is the selectivity for carbonate over P, with a selectivity series in the approximate order 234 

CO3
2-> HPO4

2->> SO4
2-, OH->F-> Cl-> NO3

- (Miyata 1983; Shin et al. 1986; Cavaniet al. 1991). 235 

Many hydrotalcites are also synthesised with carbonate as the predominant anion and thus require 236 

anion exchange before they can be used as P-adsorbents. When carbonate is also combined with 237 

sulphate, nitrate and chloride (as might commonly occur in natural or wastewaters) the reduction of 238 

P adsorption to the hydrotalcite is further decreased (Shin et al. 1996).  239 

2.3. Modified clay mineral or soils 240 

2.3.1. Expanded/thermally treated clay aggregates  241 

Expanded clay aggregates, where clay interlayers are expanded or exfoliated via heating, have been 242 

extensively investigated in laboratory and constructed wetland systems, to evaluate their potential for 243 

P-uptake (e.g. Johansson et al. 1995). The P uptake capacity of expanded clay aggregates is mostly 244 
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determined by the Ca concentration (Zhu et al. 1997), with the adsorbed P probably precipitating as 245 

hydroxyapatite (Zhu 1998). Alternatively, thermally-treated palygorskite has also been demonstrated 246 

to be an effective P-adsorbent in aquatic systems (e.g. Gan et al, 2009; Yin et al., 2013).  247 

2.3.2. Rare earth modified clays, zeolites and soils 248 

Rare earth element (REE)-modified clays such as lanthanum (La)modified bentonite were initially 249 

developed in the 1990s as a method to remove dissolved P from the water column and also to form a 250 

reactive layer of bottom sediments to intercept and bind P released from underlying sediments 251 

(Douglas 2007, 2007; Douglas et al. 2004, 2008;Robb et al. 2003). Extensive laboratory testing 252 

demonstrated that in the presence of a strong oxyanion such as P, a stable mineral (LaPO4.nH2O – 253 

rhabdophane) is formed (Douglas et al. 2000). This mineral is an analogue of other REE-P minerals 254 

that were demonstrated to be resistant to weathering over geological time. Other studies suggested that 255 

the newly precipitated rhabdophane is resistant to microbial attack from endemic sediment micro-256 

organisms at least in the short-term (days to months, Douglas et al. 1997). A study on sediments from 257 

ten La-modified bentonite-treated lakes again demonstrated formation of rhabdophane (Douglas et al, 258 

2000) and slow transition to the extremely stable mineral monazite (Dithmer et al. in press). Large-259 

scale field trials of lanthanum-modified clays suggest that they are effective in capturing a substantial 260 

proportion of P released from bottom sediments when applied as a thin (ca. 1mm) reactive capping 261 

(Douglas and Adeney 200l). Following on from the development of rare earth modified clays, similar 262 

materials which incorporate lanthanum into an aluminosilicate matrix, including lanthanum modified 263 

vermiculite, zeolite, and soils, have been synthesised and evaluated (Huang et al. 2014; Yuan et al. 264 

2009; Ning et al. 2008).   265 

2.4. Mining, mineral processing and industrial by-products 266 

2.4.1. Red mud/sand 267 

The global inventory of red mud is estimated to be in excess of 2.7 billion tonnes, with an annual 268 

increment of 120 million tonnes (Klauber et al. 2009; Pontikes and Angelopoulos, 2013). Red mud 269 

has frequently been demonstrated to bind P from effluent or in soils. The degree of adsorption may 270 

http://www.sciencedirect.com/science/article/pii/S0921344913000062#bib0150
http://www.sciencedirect.com/science/article/pii/S0921344913000062
http://www.sciencedirect.com/science/article/pii/S0921344913000062
http://www.sciencedirect.com/science/article/pii/S0921344913000062
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be strongly affected by pH (e.g. see Barrow 1982) and the amount of gypsum added to the red mud 271 

as an amendment. This high affinity for P reflects the presence of high concentrations of Fe-272 

oxyhydroxides and/or Alspecies in the red mud, although little research has been undertaken to 273 

elucidate the exact mechanism of P retention. Extensive field and laboratory trials have been 274 

conducted with native red mud (or amended derivatives). Red mud has also been tested for its ability 275 

to reduce P from aqueous solutions (Shiao and Akashi 1977) and from drain water (Ho and Mathew 276 

1993). An inherent characteristic of red mud is that it is strongly alkaline as a legacy of the Bayer 277 

process and thus, is usually neutralised (amended) prior to experimental use. This treatment, most 278 

frequently with gypsum, may significantly increase the P adsorption capacity of red mud. However, 279 

red mud may also contain high concentrations of dissolved salts that may have to be removed for 280 

particular applications by washing. In addition, untreated and/or amended red mud may contain 281 

substantial concentrations of chemically leachable or water extractable P (Ho and Mathew 1993). 282 

The mixing of red mud with seawater, the lowest cost and most readily available material for 283 

neutralization, results in the formation of hydrotalcites (Thornber and Hughes 1987). Extensive 284 

testing of red mud, and in particular seawater-neutralised red mud, indicates that it may have some 285 

P-uptake capacity but this is often reduced in the presence of bicarbonate (e.g. Wang et al, 2008).   286 

2.4.2. Slags 287 

A range of slags as P absorbents, including blast furnace slag, and related slags such as basic oxygen 288 

furnace (BOF) slag and electric arc furnace slag (EAF), has been investigated extensively over the 289 

past three decades (Yamada et al. 1986; Baker et al. 1998; Johansson and Gustafsson 2000; 290 

Wendling et al. 2012). Blast furnace slag may occur in both crystalline and amorphous forms and is 291 

principally composed of silica, aluminium derived from the parent iron ore with appreciable Ca 292 

derived from the flux. The large proportion of CaO, and sometimes MgO, results in an alkaline slag, 293 

which may impart a pH of between ca. 8-11 in leachates (Proctor et al. 2000) and when used in 294 

laboratory and field trials (e.g. Johansson 1999; Drizo et al. 2002). Possible applications that have 295 

been investigated at either laboratory or field scale include the capture of P released from bottom 296 

sediments (Yamada et al. 1987), and as a substrate to enhance the P uptake capacity of constructed 297 
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wetlands (e.g. Mann and Bavor 1993; Sakadevan and Bavor 1998). Most studies have identified the 298 

formation of Ca-P minerals such as hydroxyapatite as the predominant form of adsorbed P (e.g. 299 

Johansson and Gustafsson 2000; Drizo et al. 2002).  300 

 

2.4.3. NUA 301 

Neutralised Used Acid (NUA) is a by-product from the production of synthetic rutile from ilmenite, 302 

formed by using sulphuric acid to leach impurities from ilmenite. The spent acidic wastewater is then 303 

neutralised with quicklime to form NUA. This reaction results in an intimate mixture of Fe-304 

(oxy)hydroxides and related Fe-minerals (~30-35%), and gypsum (~60%), with minor quartz (~5%) 305 

also present, with a high surface area, and a range of surfaces potentially amenable to P-uptake. A 306 

long-term (ca. 1500 day) study using NUA as a 5% soil amendment demonstrated a 97% reduction 307 

in leachable P. Observations of on-going gypsum dissolution from the NUA has likely resulted in the 308 

formation of Ca-P minerals including apatite, whilst fine-grained Fe-(oxy)hydroxides also acted as a 309 

substrate for P-adsorption (Douglas et al. 2012). 310 

2.4.4. Coal Fly Ash 311 

Coal Fly Ash (CFA) is produced in large quantities internationally. Recent studies indicated that 312 

chitosan-modified CFA can effectively reduce the TP in the water column by flocculating algal cells 313 

(Yuan et al., 2015). The Al and Fe contained in CFA facilitated chitosan binding for algal removal 314 

due to improved charge neutralization, which may also contribute to P binding and depress P release 315 

when settled on the sediment. 316 

3. Guiding principles for the assessment, application and development of P-adsorptive 317 

materials 318 

In the development and application of materials to freshwater ecosystems to address eutrophication, 319 

and in particular to reduce bioavailable P concentrations, a number of common general guiding 320 

principles should be employed in order to achieve an optimal outcome.  These guiding principles can 321 

be readily incorporated into a decision support system and risk assessment framework (e.g. Hickey 322 
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and Gibbs 2009) that is underpinned by characterisation of the system status and function, the mode 323 

of application and intended target of the P-adsorptive materials, fiscal constraints, and stakeholder 324 

buy-in and acceptance.  The guiding principles are outlined below.   325 

3.1. Target setting 326 

In any lake management project it is essential to first set a series of realistic water quality targets 327 

against which the success of the implemented measure can be assessed. The drivers of restoration will 328 

be site specific and may include water quality targets dictated by policy (e.g. European Water 329 

Framework Directive; EC 2000), human health risk thresholds of cyanobacteria biomass (e.g. WHO 330 

2008), economic benefits to industry and society (e.g. Pretty et al.2003; Dodds et al.2009), reduction 331 

of the need to control taste and odour problems in drinking water treatment plants (Codd 2000), and 332 

biodiversity or habitat conservation interests (e.g. JNCC 2005). The likelihood that the use of any P-333 

adsorbent will achieve multiple non-target benefits (i.e. over and above the control of P) should be 334 

considered fully prior to application. Similarly, the risk that P-adsorbents may have undesirable 335 

effects on management targets (e.g., for external nutrient load targets) and ecotoxicity should also be 336 

fully considered. For example, Gunn et al. (2014) report a range of responses in non-native invasive 337 

aquatic macrophyte species in Loch Flemington following an improvement in water clarity associated 338 

with a lanthanum-modified bentonite (LMB) application, although cause-effect was not quantified. In 339 

this case, water quality and human health risk targets were met, at least in the short term, but 340 

conservation outcomes were negatively impacted. 341 

Lake management is rarely driven by simple targets for P or phytoplankton biomass reduction, but 342 

instead by a myriad of interacting, and, at times conflicting processes driven by a diverse stakeholder 343 

community. The diversity in the stakeholder community can in itself lead to conflicting demands in 344 

relation to desired ecosystem services or goods. Of course, where wide reaching policy is relevant 345 

(e.g. across EU WFD lakes), then some level of inter-calibration can support common standard/target 346 

setting approaches across large numbers of lakes. For example, in the EU a relatively complex set of 347 

metrics has been proposed and calibrated across member states, with which ecological status 348 

following degradation and mitigation phases can be quantified (Birk et al. 2013). It is important that 349 
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any geo-engineering measures be assessed in line with these targets, especially where they are being 350 

used for reporting on statutory responsibilities of environmental regulators. In this case, monitoring 351 

procedures, metric calculation approaches and targets are standardised (Poikane et al. 2015) although 352 

each metric may have uncertainty associated with it (Carvalho et al. 2012). 353 

It would be useful to develop material specific targets to ensure high confidence in their practical 354 

application. For example, the minimum concentration of the material in bed sediments relative to 355 

water column or sediment TP concentrations could be used to determine effective dose (e.g. Huser et 356 

al.2015). Reductions in TP flux measured using intact core incubations may also be a useful 357 

determinant to employ to indicate effectiveness of the control of internal P loading (Reitzel et 358 

al.2015). Similarly, where ecotoxicological issues are possible, minimum concentrations of high-risk 359 

components could be set and monitored as part of a licence agreement between water managers and 360 

regulatory bodies (e.g. the standard for dissolved lanthanum at 10.1 µg L-1 in place in the Netherlands; 361 

similar targets exist for Al in most countries). It is also important to explore the national scale 362 

inventory of lakes failing these targets, to produce estimates of the wider scale need for such 363 

management approaches and the potential for negative unintended consequences at the large scale 364 

(Spears and Maberly 2014).  365 

3.2. System characterisation and function 366 

A holistic understanding of system function is fundamental to the effective application of any P-367 

adsorptive material in a freshwater ecosystem. This understanding includes knowledge of the size of 368 

the inventory of labile nutrients associated with bottom sediments, the magnitude of sediment nutrient 369 

fluxes, and changes in nutrient speciation related to, for example, anoxia. A further basic requirement 370 

is knowledge of temporal changes in limnological characteristics of the waterbody, including water 371 

volume, nutrient concentrations, phytoplankton biomass and composition, temperature and dissolved 372 

oxygen through the water column and duration of stratification. These measurements should be part of 373 

a water quality monitoring program that has ideally been established prior to any material application. 374 

In addition, external nutrient inputs should be quantified (e.g. Welch et al. 2015), so that a nutrient 375 

budget can be established to better understand the potential longevity of an application (e.g. Catherine 376 
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et al. 2010). Additional variables, including macrophyte cover, zooplankton, benthic 377 

macroinvertebrates, fish and avian populations, should also ideally be part of the monitoring 378 

programme and can provide valuable evidence of either acute (e.g., ecotoxicological) or long-term 379 

responses to geoengineering (Wang et al. in press). For example, one of the premises of geo-380 

engineering for eutrophic, phytoplankton-dominated shallow lakes is to bring about a regime shift to 381 

macrophyte-dominated vegetation; sampling of both phytoplankton and macrophyte populations 382 

would provide documentation of such a change. While the collection and synthesis of the above data 383 

constitutes an on-going financial encumbrance, particularly if monitoring is maintained over a number 384 

of years, it must be balanced with the intrinsic ecological and social value of the aquatic system, and 385 

the requirement to be able to make sufficiently well-informed assessments of the management 386 

requirements.   387 

Monitoring can also provide information about nutrient limitation of phytoplankton growth, which 388 

may be based on measurements of total and dissolved nutrient species, often augmented with 389 

laboratory-based trials (e.g. bioassays) to provide more direct indications of nutrient limitation. In an 390 

ideal scenario, the collective system knowledge could also be integrated into a biophysical model of 391 

the system (e.g. Battin et al., 2008). Importantly, this model can then inform the development of water 392 

quality targets for dissolved P and other nutrient species (e.g. Polkane et al. 2014), as well as the 393 

timing and dose(s) of one of more P-adsorptive materials.  Modelling can also assist with testing 394 

different dosing scenarios refine the procedure with the aim of reducing the extant water column P 395 

concentration in addition to the internal loading, and decreasing phytoplankton biomass and the 396 

occurrence of undesirable species.   397 

3.3. P-adsorptive materials – a multiplicity of roles in freshwater aquatic systems 398 

Performance testing of P-adsorptive materials in terms of reaction kinetics, total uptake capacity, 399 

influence of other chemical species, and physicochemical conditions is essential to best estimate 400 

dosage and select the most suitable materials for application in eutrophic freshwater systems. We 401 

differentiate below three scenarios which can involve performance testing. 402 
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Water column (days to weeks): In the initial phase where the P-adsorptive material is applied to 403 

surface waters, the material may be fully dispersed into constituent particles or aggregates to 404 

maximise the available surface area, the reactivity and hence the potential for P uptake.  The 405 

immediate focus here is to reduce the bioavailable P inventory in the water column. Settling of the 406 

added material, particularly if there are flocs or aggregates, would normally occur in quiescent 407 

laboratory conditions within two days but may be longer (e.g. weeks to months) under natural 408 

conditions, particularly in deep waters, under well-mixed conditions or via wind-induced resuspension 409 

or convective overturn (Spears et al. 2013b).   410 

Reactive capping (weeks to months): Once settled, the role of the P-adsorptive material fundamentally 411 

changes. If distributed evenly and in sufficient quantity over the bottom sediment, it forms a pervasive 412 

barrier of P-adsorptive material to act as a reactive (absorptive) capping agent in intimate contact with 413 

the bottom sediments. Hence the role of the P-adsorptive material is to act primarily as a reactive 414 

capping to intercept P migrating upward in the sediments, with varying fidelity depending on the 415 

thickness, extent of sediment coverage, and P mass in the bottom sediments. The reactivity of the 416 

settled P-adsorptive material will likely be less than that when present in the water column due to 417 

aggregation, and possibly compaction, limiting ingress into, and interaction with, P-rich porewaters in 418 

the bottom sediments.  This is likely to be balanced in part, however, by the thickness of the applied 419 

P-adsorptive material, (e.g. typically 1-2 mm for lanthanum-modified bentonite), such that there will 420 

be substantial physicochemical interaction between any P migrating upwards from the bottom 421 

sediments and the reactive capping layer.  The longevity of the reactive capping of P-adsorptive 422 

material will be a function of any remaining P-uptake capacity at the time of sedimentation to the 423 

bottom, the bottom-sediment P flux and physical transport of the material due to resuspension or 424 

bottom currents.  Of primary importance, however, is how quickly the material is buried vertically 425 

(Meis et al. 2011; Reitzel et al.2015) or translocated horizontally (Yasseri et al., 2015) as a result of 426 

deposition of material from the overlying water column (related to catchment P loads) and physically 427 

and biologically induced bed disturbance and sediment focussing, which are discussed below. 428 
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Buried or redistributed reactive capping (months to years): In the majority of freshwater systems two 429 

processes induce the burial of any applied P-adsorptive material. The first is bioturbation, particularly 430 

where fish or benthic fauna create deep conduits within the bottom sediment and migrating P bypasses 431 

the reactive capping (e.g. Nogaro et al. 2006; Huser et al. 2015). In general, disturbance of the 432 

capping layer by benthic fauna will redistribute the P-adsorptive material and lead to heterogeneous 433 

coverage that potentially may reduce its effectiveness.  The dosage should be based on this interacting 434 

sediment depth to avoid dilution of the P-adsorptive material in relation to the potential P pool. 435 

The second key process is the addition of new particulate material to the bottom sediments. 436 

Deposition rates increase in the presence of storm events but these events may also elevate nutrient 437 

concentrations and increase rates of deposition of organic material to the bottom sediments. This 438 

process alone may be sufficient to bury any applied P-adsorptive materials, although production of 439 

autochthonous organic matter (e.g. phytoplankton) will be reduced in the treated water column. In 440 

addition, focussing (preferential deposition) of new sediment or the applied P-adsorptive material may 441 

compromise the integrity of the reactive capping layer and physically mix and dilute the capping 442 

layer. Although some redistribution and progressive burial of the P-adsorptive material is to be 443 

expected, materials that are insensitive to changes in redox status and form highly insoluble 444 

compounds may, depending on whether they retain any remaining P-uptake capacity, still function 445 

effectively as a P-sink whilst buried within the bottom sediments.   446 

3.4. Composition, mineralogy and physical morphology of potential nutrient adsorptive materials 447 

The composition and mineralogy of a potential nutrient adsorptive material are major determinants of 448 

its function, effectiveness and potential viability and efficacy.  The goal is to be able to precisely 449 

match the attributes of the P-adsorptive material to the nature of the system to ensure effective P 450 

reduction. Relevant attributes include the composition, particle size and density of the material, as 451 

well as its performance under pH and redox conditions that approximate but also extend beyond those 452 

expected in the system.  Relevant attributes in the context of different materials are given in Table 1.   453 

On the basis of composition and mineralogy, many prospective materials, including some natural soils 454 

or industrial by-products derived from the mining, mineral processing or other industries, although 455 
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potentially possessing one or more promising characteristics, may be deemed inappropriate.  456 

Examples might include materials containing fibres, leachable/labile trace elements including metals 457 

and metalloids, or in specific cases, naturally occurring radionuclides.  Nonetheless, if assessed and 458 

considered on a case by case basis, many natural materials such as shales, serpentinite, soils and 459 

sands, and mining or mineral processing by-products such as red mud and slags, may also be 460 

considered for specific applications (Table 1).  Materials manufactured from well-defined precursor 461 

materials, however, such as allophane and imogolite, and modified clay and zeolite have a distinct 462 

advantage of tighter quality control and composition, with less natural variation.  In addition, the 463 

active constituent is not diluted by other inert or inactive components such as may be the case in 464 

mining or mineral processing by-products, and hence tends to have a higher and more consistent P-465 

uptake capacity.   466 

Of fundamental importance when considering the development of a P-adsorptive material is its 467 

sensitivity to changes in redox status (e.g. Douglas et al. 2004).  Many eutrophic aquatic systems are 468 

characterised by large external loads of labile organic carbon and/or high rates of generation of 469 

organic carbon within the system. Microbially-mediated degradation of this material will facilitate 470 

often spatially extensive and sustained periods of water column anoxia and low redox state.  Thus, the 471 

majority of Fe-based materials, while possessing some potential as soil amendments within 472 

catchments or as reactive media in constructed wetlands, are unlikely to be suitable for deployment in 473 

eutrophic aquatic systems.  These materials are highly redox sensitive and are likely to release 474 

previously accumulated P during reductive dissolution.  Under circumstances when anoxia occurs, 475 

even if only briefly, the appropriate P adsorbents will include hydrotalcites, allophane/imogolite, rare 476 

earth modified clays, carbonates/calcined derivatives or soils and soil derivatives (depending on 477 

composition), all of which are insensitive to redox status (Table 1).  478 

The sensitivity of P-adsorbent materials to other physicochemical conditions in the water column, 479 

besides redox status, also requires a priori evaluation, for example using laboratory- or mesocosm-480 

scale assessments.  The most important of these physicochemical conditions is pH.  Changes in pH 481 

may affect both uptake capacity and kinetics of P-adsorbent materials, and in the worst case can 482 
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potentially lead to massive releases of accumulated P due to dissolution or ion-exchange reactions.  483 

Ideally the P-adsorbent material will have a wide operational pH range that spans both moderately 484 

acidic conditions of pH 5-6 up to pH of at least 10, corresponding to values attained during major 485 

phytoplankton blooms in poorly buffered systems.  In this respect, La-based materials are often ideal 486 

given the wide pH stability of lanthanum phosphate minerals (Table 1 and Copetti et al., 2015), 487 

although some lanthanum may potentially be released to the water column above pH 9 (Reitzel et al., 488 

2013).  Alternatively some materials such as carbonates (circumneutral pH) and calcined derivatives 489 

(high pH) may possess a degree of buffering capacity, albeit at substantially differing pH. In the 490 

specific case of carbonates this may be undesirable for application in a freshwater aquatic system 491 

where the final pH may increase to above 9.5.   492 

System-specific factors such as the composition of the water in terms of both major and trace 493 

elements, dissolved organic carbon and alkalinity, may also affect uptake kinetics and in some cases 494 

have a major impact on total P uptake capacity.  This may occur, for example, due to the precipitation 495 

of unintended secondary phases in place of the target nutrient such as lanthanum carbonates instead of 496 

lanthanum phosphates associated with DOC complexation at exchange sites(e.g. Lurling, et al. 2014; 497 

Spears et al. 2015).   498 

In addition to considerations of the composition, mineralogy, physicochemical behaviour and water-499 

P-adsorbent interactions outlined above, the morphology, and in particular particle size distribution 500 

and density, are also key considerations in the development of P-adsorptive materials.  In the context 501 

of aquatic system applications this may in some cases be advantageous as materials can be rapidly 502 

conveyed to the bottom sediments by virtue of their large particle size and/or high density, and may 503 

also be more resistant to resuspension and transport.  Conversely, however, these characteristics may 504 

also increase the rate of burial via displacement of less dense particles or aggregates extant in the 505 

bottom sediment.  Generally, the reactivity of P-adsorptive materials will decrease with the ratio of 506 

particle surface area to volume.   507 

3.5. Ecotoxicity 508 
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The ecotoxicological profile of a P-adsorptive material is of paramount importance and is often 509 

closely aligned with its mineralogy, physical form, chemical composition and origin (e.g. slags and 510 

fly ash, Table 1). A suite of detailed ecotoxicological tests should be undertaken in order to assess the 511 

extent of possible acute and chronic ecotoxicological impacts on a range of biota relevant to the 512 

aquatic system to be treated (e.g. Stauber 2000; Stauber and Binet 2000; Lurling and Tolman 2010; 513 

Reitzel et al.2012; Spears et al. 2013a; Van Oosterhout and Lurling 2011, 2013; Wang et al. 2015). 514 

For estuary applications the ecotoxicological testing may also need to encompass both fresh and 515 

saline waters. Tests on biota should also include considerations due to physical changes in sediment 516 

composition; from burial to changes in sediment particle size and impacts on sediment irrigation 517 

processes. 518 

3.6. Evaluation of P-adsorbent materials prior to full-scale implementation 519 

Given the inherent diversity of freshwater systems in terms of both bottom-sediment composition and 520 

water quality, and the diversity of potential P-adsorbents available (Table 1), a fundamental 521 

prerequisite to full-scale application of P-adsorbent material is a suitably scaled assessment of P-522 

uptake performance, which may also help to foreshadow any unforeseen or unintended treatment 523 

consequences.  Once the most appropriate P-adsorbent material(s) has been chosen, a suite of 524 

potential evaluation steps may be employed.  These may range, in increasing order of scale, 525 

complexity, time and cost, from laboratory testing of water samples alone to core samples 526 

incorporating both bottom sediment and water, both stirred and unstirred to simulate sediment–water 527 

exchange, to small (metre-scale) and/or larger (many metres or isolated portions of an aquatic system) 528 

mesocosm studies incorporating many of the major elements (water, sediment, biota, atmospheric 529 

exchange, mixing, stratification) of the aquatic system (e.g. Douglas et al. 2008; Pan et al., 2011).   530 

Importantly, with increasing scale comes an increased understanding of the performance of, and 531 

confidence in, the P-adsorbent material in the system of interest.  In addition, other fundamentally 532 

important variables such as dose, performance in terms of kinetics, total uptake capacity and potential 533 

longevity, are able to be better simulated, but ability to achieve replication or carry out multiple 534 

treatments is usually not possible.  Ideally, mesocosm-scale trials, where appropriately replicated, and 535 
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with suitable controls, can provide a convenient in-situ ‘laboratory’ to evaluate aspects of changes, if 536 

any, in benthic biota due to physical (e.g. smothering of benthic biota), chemical (interaction of the 537 

adsorbent with the water column) or ecotoxicological (e.g. from chemical interaction or direct 538 

ingestion) effects from the application of the P-adsorbent material (Douglas et al. 2004). For instance, 539 

an enclosure experiment testing lanthanum-modified bentonite (LMB), dredging and their 540 

combination (Lürling and Faassen 2012) also revealed gradually increased filterable La 541 

concentrations in the LMB treated enclosures, to concentrations of above 100 μg La L-1, that made the 542 

authorities conclude LMB was not an option as these concentrations exceeded the Dutch La standard. 543 

3.7. Cost-benefit analysis 544 

The cost of eutrophication and the cumulative effects of phytoplankton blooms and changes in 545 

ecosystem function can be considered on five levels: 546 

 the loss of ecosystem function and values with eutrophication; 547 

 a status quo, “do nothing”, approach; 548 

 the implementation of one or more technologies to reduce nutrient loads and concentrations;  549 

 the implementation of existing P-adsorbent technologies (Table 1);and 550 

 the development of novel interventions or management technologies.   551 

Estimates of the costs of eutrophication and phytoplankton blooms have been made in a number of 552 

studies.  Recently, Hamilton et al. (2014) estimated costs in a range of categories including 553 

surveillance and monitoring, treating and managing surface water supplies and management of 554 

nutrient catchment loads, with the conclusion that factors such as increasing nutrient export and 555 

climate change are likely to lead to increases in management costs in the future.  Hamilton et al. 556 

(2014) provide a range of costs for cyanobacteria blooms in different freshwater systems across the 557 

world, including a single bloom event in Lake Taihu (China) of costs c.US$20M. Dodds et al. (2009) 558 

estimated the costs of eutrophication management in the USA to be approximately US $2.2B 559 

annually. In Australia the costs of freshwater cyanobacterial bloom management have been estimated 560 

to be between AU$180M and 220M annually (LWRRDC 1998).  In England and Wales the cost was 561 
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estimated to be between US$105M and160M annually (Pretty et al. 2003) comprised of reduced 562 

values to waterfront dwellings, additional drinking water treatment costs, reduced amenity of 563 

waterbodies, removal of algal toxins and decomposition products from drinking waters, the reduced 564 

value of non-polluted atmosphere (e.g. geosmin), ecological effects and tourist industry losses.   565 

Contemporary management of eutrophication symptoms in freshwater and estuarine systems 566 

emphasises source reduction from both diffuse and agricultural point sources through implementation 567 

of best practice.  In Australia, at least, changing agricultural practices and effecting behavioural 568 

changes take considerable time and are reliant on the development of new approaches.  Although 569 

substantial effort is now being directed to fertiliser management and point source reduction, it will be 570 

many years before effective reductions in nutrient losses to waterways will be achieved.  In the 571 

interim there is substantial pressure and public expectation to reduce algal blooms and fish kills.  In 572 

some cases there is no “Do Nothing” option as major highly developed estuaries are on the edge of 573 

ecological collapse. Phosphorus adsorptive clays or materials allow P accumulated in sediments to be 574 

treated and offer rapid topical treatment options for water bodies to address legacies of P within these 575 

systems.   576 

Placed in the context of whole catchment solutions, the cost of P adsorptive clay treatments is 577 

relatively low, depending of course on the efficacy and cost of the material.  In Western Australia 578 

(WA) application of LMB in small cyanobacteria-prone water bodies showed an immediate reduction 579 

of 95% to 99% in P available for algal growth for the expenditure of about $150,000 per application.  580 

Similar reductions from primary nutrient sources would have taken years of behaviour change and a 581 

substantially higher cost.  Whole-of-catchment solutions that cost many millions of dollars over a long 582 

time period are still required and P adsorptive materials offer promise when used as part of “treatment 583 

train” approach.  As a comparison, if P adsorptive materials were used as the sole treatment in 584 

selected agricultural drains in WA the cost of $1M per year compares to estimates of $100M over ten 585 

years to reduce nutrients at source.  These estimates should not be taken to mean that the authors do 586 

not advocate for sustainable long-term solutions involving catchment restoration. Rather, they indicate 587 
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that a balance of investment is required between catchment restoration and use of P adsorptive 588 

materials where there is a prerogative to address eutrophication in a timely, cost-effective manner. 589 

Based on the authors’ experiences, we consider below the level of investment required in research and 590 

development, from concept to application of novel P-adsorptive materials. We include considerations 591 

of patenting and commercialisation. To this end, an estimate of the costs that may be typically 592 

involved in product development is given after each component in parentheses below. These estimates 593 

constitute what may be considered typical costs but may vary substantially on a case by case basis.   594 

Conservatively, it may take two years for a material to be conceived and tested at a laboratory scale 595 

prior to more extensive in-field assessment. For this we have assumed a nominal salary of USD$100K 596 

for the researcher for each of the two years (USD$200K).  Ecotoxicological evaluation may include 597 

acute and chronic effects testing over at least four trophic levels commensurate with the likely 598 

population of target aquatic ecosystems (USD$200K).  Field trials are typically 1-2 seasons in 599 

duration, involving both research and technical staff, construction, sampling and analysis costs 600 

($200K).  Regulatory approvals may typically take a year in each separate jurisdiction or country, 601 

however, requirements are often similar for each although local consultants may be required to 602 

manage each on a case-by-case basis ($100K).  If the nutrient adsorptive material is deemed 603 

sufficiently novel then patenting for both national (country of origin) and international jurisdictions of 604 

relevance may be undertaken (USD$250K).  If it is deemed that the technology has potential 605 

commercial value, project management, usually by the inventor but with legal and business 606 

assistance, identification of a partner company and full technology transfer including initiation and 607 

monitoring of field trials, stakeholder and regulatory liaison and reporting, may occur for at least two 608 

years (USD$250K).  Thus, there may be considerable delays in the testing of an initial concept, 609 

through extensive laboratory and field trials over a variety of scales, upscaling of manufacture, 610 

ecotoxicological testing, regulatory submission and approval (with the possible imposition of 611 

conditions), and engagement of commercial partners.  Many of these steps may also have to be 612 

repeated in each new jurisdiction, placing a considerable cost and intellectual burden on the developer 613 
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or applicant, notwithstanding many years of trials and validation, before there is widespread 614 

regulatory and public acceptance, as well as commercial return on investment.   615 

Thus, based on some conservative estimates outlined above, the development of a novel, viable, 616 

nutrient adsorptive material may cost in the order of USD$1.2M.  In addition to the above, however, 617 

given the traditionally conservative nature of many management agencies and stakeholders of aquatic 618 

systems, some years may elapse between recognition and ownership of the (eutrophication) problem. 619 

After this recognition followsthe need for active intervention, the demonstration of successful trials, 620 

regulatory and stakeholder acceptance, and the ability to quarantine and direct the requisite funding, 621 

perhaps over a number of years, also involving the concomitant management of external loads, to 622 

enable full-scale intervention.   623 

3.8. Regulatory approval 624 

In the majority of jurisdictions, regulatory approval is required to implement P-adsorptive materials 625 

directly to lakes.  While regulatory requirements may vary considerably between jurisdictions, and for 626 

different P-adsorbents (Table 1), a demonstrable thread of characterisation including mineralogical 627 

and chemical testing, ecotoxicity assessment and extensive laboratory trials are generally required to 628 

determine both efficacy and safety.  The Netherlands is the only country in the world that has an 629 

official La standard of 10.1 μg L-1 as the maximum allowable concentration (MAC) in fresh surface 630 

water (Sneller et al. 2000). Hence, the residual filterable La concentration following application of 631 

LMB is of great importance. The MAC is based on studies performed by NOTOX B.V. in 1995 632 

(NOTOX 1995). The reported No Observed Effect Concentration (NOEC) of 100 μg L-1 has been 633 

divided by 10 giving the maximum allowable addition of 10.1 μg L-1, which with an estimated 634 

background concentration of 0.1 μg L-1, yields the MAC of of 10.1 μg L-1 (Sneller et al. 2000). The 635 

underlying chronic Daphnia magna reproduction test contained a period of several days in which the 636 

test animals received less food and in the treatments showed lower reproduction, but reproduction was 637 

restored to normal (similar to controls) when food supply was increased again. Since cumulative 638 

reproduction was chosen as the endpoint, this unusual experimental condition led to the NOEC of 100 639 

μg L-1. In the period of less food in the highest La doses, precipitation and consequently food 640 
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limitation may have occurred (Lürling and Tolman 2010). In addition, calculating exposure 641 

concentrations based on the geometric mean of the two extremes in the measured La concentrations 642 

(NOTOX 1995) gave a value half or less than if all data had been used in determining a mean or 643 

median. Hence, there are significant doubts regarding the validity of the official Dutch La standard. 644 

Nonetheless, filterable La has to be measured and values exceeding the Dutch La standard, even when 645 

these are caused by insoluble and non-bioavailable La-oxyanion colloids, can lead to a ‘no-646 

go’situation as was evidenced in Pond De Ploeg in 2009 (Lürling et al. 2012). The combined 647 

application of LMB and a low dose flocculent (poly-aluminium chloride, PAC) needed a thorough 648 

risk assessment prior to application in Lake Rauwbraken (The Netherlands, 2008; Lürling and van 649 

Oosterhout 2013). However, a follow-up whole-lake experiment in Lake De Kuil (The Netherlands, 650 

2009; Waajen et al.2015) situated in the jurisdiction of a neighbouring water authority to Lake 651 

Rauwbraken met strong opposition from the legislator for Al treatment. Despite scientific 652 

documentation and safety reporting, the legislator refused to licence a permit for PAC; instead 653 

Fe(III)chloride had to be used as a flocculent. This example illustrates that regulatory approval may 654 

differ even within a country depending on the interpretation of the legislator involved. It is evident 655 

that only well-documented case studies can address such situations and thus applications should 656 

include thorough long-term post application monitoring to validate treatment performance and 657 

provide robust data that can be used to assist in determining safety and efficacy of whole of lake 658 

experiments or prescribed treatments (e.g. Özkundakci et al. 2010). 659 

3.9. Public/social acceptance 660 

In the majority of freshwater ecosystems it is a fundamental requirement as a prelude to intervention 661 

that robust, independent scientific assessment is obtained to underpin all interactions with 662 

stakeholders in terms of both regulatory approval (as discussed above) and the general public (e.g. 663 

Spears et al. 2013).  Critically important in this process is to make available the scientific assessment 664 

in a transparent, palatable, and user-friendly fashion.  This is particularly so where P-adsorbents may 665 

be nominally considered as industrial waste materials (e.g. slags or fly ash, Table 1) or are considered 666 

novel or not naturally-occurring (e.g. La-substituted materials, Table 1).  Ideally, the preliminary 667 
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dissemination of information will commence in parallel with the initial assessment or laboratory/pilot 668 

trial stages such that elements of misinformation or scepticism are addressed in the first instance.  669 

Ideally, the stakeholders will be engaged early and kept fully informed of the progress to facilitate a 670 

partnership, garner acceptance and intellectual buy-in before, during and after full-scale 671 

implementation of the nutrient management process.   672 

A method to address the multiple issues raised above would be to establish a multinational Centre of 673 

Excellence in P-adsorbent technology (Spears et al. 2013). The Centre would seek to bring a unified 674 

approach and consensus to some of the critical steps, including public acceptance, regulatory 675 

approvals, ecotoxicological tests and limit-setting, time periods from concept to full-scale application, 676 

and provision of commercial quantities of the P-adsorbent. The Centre could leverage resources and 677 

facilitate further research, development and validation of the performance of P-adsorbents in addition 678 

to aligning approval processes for use, thus streamlining a process currently fraught with myriad 679 

regulatory and other roadblocks both within and between countries.   680 

4. Conclusions 681 

The goal of effective interception, containment and long-term immobilization of phosphorus from 682 

point and/or diffuse sources has gained increasing prominence over the past two decades. This is 683 

particularly so as more efficient and environmentally acceptable methods are sought to combat the 684 

effects of eutrophication in freshwater ecosystems.  685 

The application of P-adsorptive materials to freshwater aquatic systems to manage the effects of 686 

eutrophication constitutes a nexus spanning a range of considerations.  These include meeting water 687 

quality goals, including public health requirements, public perception and acceptance, and (partial) 688 

restoration of ecosystem function, intended use (water column or reactive sediment barrier), 689 

operational performance, and hence longevity of the efficacy of the P-adsorptive material. 690 

It is evident that P is generally the nutrient that can be made limiting to such an extent that 691 

eutrophication and some of its associated symptoms of harmful algal blooms and bottom-water 692 

anoxia, can be minimised (e.g., Lürling and van Oosterhout 2013). Such intervention to reduce N to 693 
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concentrations similarly limiting to phytoplankton grow is often not possible. Hence, the development 694 

of materials for the control of in-system P has been the focus of recent efforts in this field. These 695 

developments have led to a better understanding of the operational performance of a wide range of P-696 

adsorptive materials as well as practical and socio-economic factors associated with their widespread 697 

use in freshwater ecosystem management. To consolidate this evidence and expedite its practical 698 

uptake we call for a multi-national collaboration and research centre to develop and test P adsorptive 699 

materials, boost scientific insights, and reduce the delay from concept to market. 700 
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Table 1. Summary of common phosphorus adsorbents used in aquatic systems and their properties Modified after Douglas et al., (2004).  

Material Selected references Composition P-uptake Cost Advantages Disadvantages 

Naturally-occurring minerals or earth materials 

Carbonates 
Shilton et al. (2005); ;Karaca et al. (2006); Mateus 

et al. (2012) ; Jaouadi et al. (2013); Xu et al. (2014) 
Ca, Mg, carbonates 

Low to moderate depends on source, particle 

size and composition 
 Low 

Abundant, naturally 

occurring 

May depend on 

limestone type 

Soils, sands, suspended 
particles 

Arias et al. (2000); Degens et al. (2000); Kim et al.  

(2014); Dai and Pan (2014): Pan et al., (2002, 

2013) 

Na-K-Ca-Mg aluminosilicates, Fe-
oxides; Fe-(oxy)hydroxides 

Low to moderate depending on composition. 
mineralogy, particle size 

 Low Naturally occurring 
May depend on soil 
type, siltation 

Natural or synthetically-produced materials 

Allophane and imogolite Wada, (1989); Farmer and Russell (1990);  Aluminosilicate High uptake capacity  Mod-high May occur in some soils 
Industrial-scale 

synthesis 

Fe-Al (oxy)hydroxides Barrow (1999); Lu et al. (2014); Fe-(oxy)hydroxides Low - high depends on mineralogy/particle size  Low May also occur in soils 
Reductive dissolution 

(Fe), P-release 

Hydrotalcite 
Miyata, (1980, 1983); Shin et al. (1996); Yang et 

al. (2014)  
Mg-Al hydroxide  High uptake capacity  Mod-high  Simple synthesis 

 Industrial-scale 

synthesis 

Modified clay minerals or soils 

Expanded/thermally treated 

clay aggregates 

Zhu et al. (1997), Johannsen et al. (1995); Adam et 

al. (2007) ; Gan et al., (2009), Yin et al., (2013) 

Aluminosilicates calcined to form 

porous aggregates 
Low to moderate  Low-Mod Clay mineral Industrial scale process 

La-modified bentonite, 

vermiculite, zeolite or soils 

Robb et al. (2003); Douglas et al. (2008) ; Huang et 
al. (2014); Yuan et al., (2009); Ning et al., (2008); 

Xie et al., (2014) 

Na or K aluminosilicates modified 

with La 
Moderate, depends on clay/soil cation exchange  Mod Clay, simple synthesis 

Suitable La, industrial 

process 

Mining, mineral processing and industrial by-products 

Red mud/sand Thornber and Hughes (1987);  Fe/Al (oxy)hydroxide, ±  gypsum Low to moderate, depends on composition   
Abundant in certain 

regions, low cost 

Often high pH, trace 
elements, potential 

ecotoxicity 

Slags 
Drizo et al (2006); Douglas et al. (2012); Wendling 

et al. (2012, 2013); Barka et al. (2014) 

Alkali/alkaline earth 

aluminosilicates 
Low to moderate, depends on composition   Abundant, low cost 

Often high pH, trace 
elements, potential 

ecotoxicity 

NUA Douglas et al. (2012) Fe-(oxy)hydroxides, gypsum High to very high  Low Low cost, high P uptake 
High Ca, SO4 from 

gypsum dissolution 
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