8 research outputs found

    Insulin-Stimulated Degradation of Apolipoprotein B100: Roles of Class II Phosphatidylinositol-3-Kinase and Autophagy

    Get PDF
    Both in humans and animal models, an acute increase in plasma insulin levels, typically following meals, leads to transient depression of hepatic secretion of very low density lipoproteins (VLDL). One contributing mechanism for the decrease in VLDL secretion is enhanced degradation of apolipoprotein B100 (apoB100), which is required for VLDL formation. Unlike the degradation of nascent apoB100, which occurs in the endoplasmic reticulum (ER), insulin-stimulated apoB100 degradation occurs post-ER and is inhibited by pan-phosphatidylinositol (PI)3-kinase inhibitors. It is unclear, however, which of the three classes of PI3-kinases is required for insulin-stimulated apoB100 degradation, as well as the proteolytic machinery underlying this response. Class III PI3-kinase is not activated by insulin, but the other two classes are. By using a class I-specific inhibitor and siRNA to the major class II isoform in liver, we now show that it is class II PI3-kinase that is required for insulin-stimulated apoB100 degradation in primary mouse hepatocytes. Because the insulin-stimulated process resembles other examples of apoB100 post-ER proteolysis mediated by autophagy, we hypothesized that the effects of insulin in autophagy-deficient mouse primary hepatocytes would be attenuated. Indeed, apoB100 degradation in response to insulin was significantly impaired in two types of autophagy-deficient hepatocytes. Together, our data demonstrate that insulin-stimulated apoB100 degradation in the liver requires both class II PI3-kinase activity and autophagy. © 2013 Andreo et al

    Insulin-Regulated Srebp-1c and Pck1 mRNA Expression in Primary Hepatocytes from Zucker Fatty but Not Lean Rats Is Affected by Feeding Conditions

    Get PDF
    Insulin regulates the transcription of genes for hepatic glucose and lipid metabolism. We hypothesized that this action may be impaired in hepatocytes from insulin resistant animals. Primary hepatocytes from insulin sensitive Zucker lean (ZL) and insulin resistant Zucker fatty (ZF) rats in ad libitum or after an overnight fasting were isolated, cultured and treated with insulin and other compounds for analysis of gene expression using real-time PCR. The mRNA levels of one insulin-induced (Srebp-1c) and one insulin-suppressed (Pck1) genes in response to insulin, glucagon, and compactin treatments in hepatocytes from ad libitum ZL and ZF rats were analyzed. Additionally, the effects of insulin and T1317 on their levels in hepatocytes from ad libitum or fasted ZL or ZF rats were compared. The mRNA levels of Srebp-1c, Fas, and Scd1, but not that of Insr, Gck and Pck1, were higher in freshly isolated hepatocytes from ad libitum ZF than that from ZL rats. These patterns of Srebp-1c and Pck1 mRNA levels remained in primary hepatocyte cultured in vitro. Insulin's ability to regulate Srebp-1c and Pck1 expression was diminished in hepatocytes from ad libitum ZF, but not ZL rats. Glucagon or compactin suppressed Srebp-1c mRNA expression in lean, but not fatty hepatocytes. However, glucagon induced Pck1 mRNA expression similarly in hepatocytes from ad libitum ZL and ZF rats. Insulin caused the same dose-dependent increase of Akt phosphorylation in hepatocytes from ad libitum ZL and ZF rats. It synergized with T1317 to induce Srebp-1c, and suppressed Pck1 mRNA levels in hepatocytes from fasted, but not that from ad libitum ZF rats. We demonstrated that insulin was unable to regulate its downstream genes' mRNA expression in hepatocytes from ad libitum ZF rats. This impairment can be partially restored in hepatocytes from ZF rats after an overnight fasting, a phenomenon that deserves further investigation

    Update on the profile of the EUSTAR cohort: an analysis of the EULAR Scleroderma Trials and Research group database

    Full text link
    OBJECTIVES: Systemic sclerosis (SSc) is a rare disease requiring multicentre collaboration to reveal comprehensive details of disease-related causes for morbidity and mortality. METHODS: The European League Against Rheumatism (EULAR) Scleroderma Trials and Research (EUSTAR) group initiated a database to prospectively gather key data of patients with SSc using a minimal essential dataset that was reorganised in 2008 introducing new items. Baseline visit data of patients who were registered between 2004 and 2011 were analysed using descriptive statistics. RESULTS: In June 2011, 7655 patients (2838 with diffuse cutaneous (dc) and 4481 with limited cutaneous (lc) SSc who fulfilled the American College of Rheumatology diagnostic criteria had been registered in 174 centres, mainly European. The most prominent hallmarks of disease were Raynaud's phenomenon (96.3%), antinuclear antibodies (93.4%) and a typical capillaroscopic pattern (90.9%). Scleroderma was more common on fingers and hands than on any other part of the skin. Proton pump inhibitors (65.2%), calcium channel blockers (52.7%), and corticosteroids (45.3%) were most often prescribed. Among the immunosuppressant agents, cyclophosphamide was used more often in dcSSc than in lcSSc. CONCLUSIONS: The EUSTAR database provides an abundance of information on the true clinical face of SSc that will be helpful in improving the classification of SSc and its subsets and for developing more specific therapeutic recommendations
    corecore