68 research outputs found

    Accuracy of Predicting the Genetic Risk of Disease Using a Genome-Wide Approach

    Get PDF
    Background - The prediction of the genetic disease risk of an individual is a powerful public health tool. While predicting risk has been successful in diseases which follow simple Mendelian inheritance, it has proven challenging in complex diseases for which a large number of loci contribute to the genetic variance. The large numbers of single nucleotide polymorphisms now available provide new opportunities for predicting genetic risk of complex diseases with high accuracy. Methodology/Principal Findings - We have derived simple deterministic formulae to predict the accuracy of predicted genetic risk from population or case control studies using a genome-wide approach and assuming a dichotomous disease phenotype with an underlying continuous liability. We show that the prediction equations are special cases of the more general problem of predicting the accuracy of estimates of genetic values of a continuous phenotype. Our predictive equations are responsive to all parameters that affect accuracy and they are independent of allele frequency and effect distributions. Deterministic prediction errors when tested by simulation were generally small. The common link among the expressions for accuracy is that they are best summarized as the product of the ratio of number of phenotypic records per number of risk loci and the observed heritability. Conclusions/Significance - This study advances the understanding of the relative power of case control and population studies of disease. The predictions represent an upper bound of accuracy which may be achievable with improved effect estimation methods. The formulae derived will help researchers determine an appropriate sample size to attain a certain accuracy when predicting genetic ris

    Lack of association between the chemokine receptor 5 polymorphism CCR5delta32 in rheumatoid arthritis and juvenile idiopathic arthritis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The chemokine receptor CCR5 has been detected at elevated levels on synovial T cells, and a 32 bp deletion in the <it>CCR5 </it>gene leads to a non-functional receptor. A negative association between the <it>CCR5Δ32 </it>and rheumatoid arthritis (RA) has been reported, although with conflicting results. In juvenile idiopathic arthritis (JIA), an association with CCR5 was recently reported. The purpose of this study was to investigate if the <it>CCR5Δ32 </it>polymorphism is associated with RA or JIA in Norwegian cohorts.</p> <p>Methods</p> <p>853 RA patients, 524 JIA patients and 658 controls were genotyped for the <it>CCR5Δ32 </it>polymorphism.</p> <p>Results</p> <p>The <it>CCR5Δ32 </it>allele frequency was 11.5% in the controls vs. 10.4% in RA patients (OR = 0.90; <it>P </it>= 0.36) and 9.7% in JIA patients (OR = 0.85; <it>P </it>= 0.20). No decreased homozygosity was observed for <it>CCR5Δ32</it>, as previously suggested.</p> <p>Conclusion</p> <p>Our data do not support an association between the <it>CCR5Δ32 </it>allele and Norwegian RA or JIA patients. Combining our results with those from a recently published meta-analysis still provide evidence for a role for <it>CCR5Δ32 </it>in RA, albeit substantially weaker than the effect first reported.</p

    Profiling the immune landscape in mucinous ovarian carcinoma

    Get PDF
    Objective: Mucinous ovarian carcinoma (MOC) is a rare histotype of ovarian cancer, with low response rates to standard chemotherapy, and very poor survival for patients diagnosed at advanced stage. There is a limited understanding of the MOC immune landscape, and consequently whether immune checkpoint inhibitors could be considered for a subset of patients. Methods: We performed multicolor immunohistochemistry (IHC) and immunofluorescence (IF) on tissue microarrays in a cohort of 126 MOC patients. Cell densities were calculated in the epithelial and stromal components for tumor-associated macrophages (CD68+/PD-L1+, CD68+/PD-L1-), T cells (CD3+/CD8-, CD3+/CD8+), putative T-regulatory cells (Tregs, FOXP3+), B cells (CD20+/CD79A+), plasma cells (CD20-/CD79a+), and PD-L1+ and PD-1+ cells, and compared these values with clinical factors. Univariate and multivariable Cox Proportional Hazards assessed overall survival. Unsupervised k-means clustering identified patient subsets with common patterns of immune cell infiltration. Results: Mean densities of PD1+ cells, PD-L1- macrophages, CD4+ and CD8+ T cells, and FOXP3+ Tregs were higher in the stroma compared to the epithelium. Tumors from advanced (Stage III/IV) MOC had greater epithelial infiltration of PD-L1- macrophages, and fewer PD-L1+ macrophages compared with Stage I/II cancers (p = 0.004 and p = 0.014 respectively). Patients with high epithelial density of FOXP3+ cells, CD8+/FOXP3+ cells, or PD-L1- macrophages, had poorer survival, and high epithelial CD79a + plasma cells conferred better survival, all upon univariate analysis only. Clustering showed that most MOC (86%) had an immune depleted (cold) phenotype, with only a small proportion (11/76,14%) considered immune inflamed (hot) based on T cell and PD-L1 infiltrates. Conclusion: In summary, MOCs are mostly immunogenically ‘cold’, suggesting they may have limited response to current immunotherapies

    Transforming Growth Factor β Signaling Pathway Associated Gene Polymorphisms May Explain Lower Breast Cancer Risk in Western Indian Women

    Get PDF
    Transforming growth factor β1 (TGFB1) T29C and TGF β receptor type 1 (TGFBR1) 6A/9A polymorphisms have been implicated in the modulation of risk for breast cancer in Caucasian women. We analyzed these polymorphisms and combinations of their genotypes, in pre menopausal breast cancer patients (N = 182) and healthy women (N = 236) from western India as well as in breast cancer patients and healthy women from the Parsi community (N = 48 & 171, respectively). Western Indian women were characterized by a higher frequency of TGFB1*C allele of the TGF β T29C polymorphism (0.48 vs 0.44) and a significantly lower frequency of TGFBR1*6A allele of the TGFBR1 6A/9A polymorphism (0.02 vs 0.068, p<0.01) as compared to healthy Parsi women. A strong protective effect of TGFB1*29C allele was seen in younger western Indian women (<40 yrs; OR = 0.45, 95% CI 0.25–0.81). Compared to healthy women, the strikingly higher frequencies of low or intermediate TGF β signalers in patients suggested a strong influence of the combination of these genotypes on the risk for breast cancer in Parsi women (for intermediate signalers, OR = 4.47 95%CI 1.01–19.69). The frequency of low signalers in Parsi healthy women, while comparable to that reported in Europeans and Americans, was three times higher than that in healthy women from western India (10.6% vs 3.3%, p<0.01). These observations, in conjunction with the low incidence rate of breast cancer in Indian women compared to White women, raise a possibility that the higher frequency of TGFB1*29C allele and lower frequency of TGFBR1*6A allele may represent important genetic determinants that together contribute to a lower risk of breast cancer in western Indian women

    Predictive value of pathological and immunohistochemical parameters for axillary lymph node metastasis in breast carcinoma

    Get PDF
    <p>Abstract</p> <p>Background/Objective</p> <p>While several prognostic factors have been identified in breast carcinoma, the clinical outcome remains hard to predict for individual patients. Better predictive markers are needed to help guide difficult treatment decisions. Axillary lymph node metastasis (ALNM) is one of the most important prognostic determinants in breast carcinoma; however, the reasons why tumors vary in their capability to result in axillary metastasis remain unclear. Identifying breast carcinoma patients at risk for ALNM would improve treatment planning. This study aimed to identify the factors associated with ALNM in breast carcinoma, with particular emphasis on basal-like phenotype.</p> <p>Methods</p> <p>Breast carcinoma patients (n = 210) who underwent breast conserving surgery and axillary lymph node dissection (ALND) (level I and II) or modified radical mastectomy were included in this study. Pathological and immunohistochemical data including individual receptor/gene status was collected for analysis. The basal phenotype status was ascertained using the basal cytokeratin markers CK5, CK14, CK17 and EGFR.</p> <p>Results</p> <p>ALNM was found in 55% (n = 116) of the patients. On univariate analysis, multicentric disease, large tumor size (>2 cm), vascular and lymphatic invasion, epithelial hyperplasia, necrosis, in situ carcinoma and perineural invasion were associated with higher risk for ALNM, whereas CK5, CK14, EGFR positivity and basal-like tumor type were associated with lower risk. On multivariate analysis, CK5 positivity (OR 0.003, 95%CI 0.000-0.23, p = 0.009) and lymphatic/vascular invasion (OR 17.94, 95%CI 4.78-67.30, p < 0.001) were found to be independent predictors.</p> <p>Conclusions</p> <p>Although the value of complete ALND has been questioned in invasive breast cancer patients, treatment decisions for breast carcinoma have been influenced by many parameters, including lymph node status. Since histopathologic characteristics and expression of biological markers varies among the same histologic subtypes of breast carcinoma, specific clinical and histopathologic features of the primary tumor and ALN status like sentinel node might be used to tailor the loco-regional and systemic treatment in different clinical settings.</p

    Impact of Anti-Inflammatory Agents on the Gene Expression Profile of Stimulated Human Neutrophils: Unraveling Endogenous Resolution Pathways

    Get PDF
    Adenosine, prostaglandin E2, or increased intracellular cyclic AMP concentration each elicit potent anti-inflammatory events in human neutrophils by inhibiting functions such as phagocytosis, superoxide production, adhesion and cytokine release. However, the endogenous molecular pathways mediating these actions are poorly understood. In the present study, we examined their impact on the gene expression profile of stimulated neutrophils. Purified blood neutrophils from healthy donors were stimulated with a cocktail of inflammatory agonists in the presence of at least one of the following anti-inflammatory agents: adenosine A2A receptor agonist CGS 21680, prostaglandin E2, cyclic-AMP-elevating compounds forskolin and RO 20-1724. Total RNA was analyzed using gene chips and real-time PCR. Genes encoding transcription factors, enzymes and regulatory proteins, as well as secreted cytokines/chemokines showed differential expression. We identified 15 genes for which the anti-inflammatory agents altered mRNA levels. The agents affected the expression profile in remarkably similar fashion, suggesting a central mechanism limiting cell activation. We have identified a set of genes that may be part of important resolution pathways that interfere with cell activation. Identification of these pathways will improve understanding of the capacity of tissues to terminate inflammatory responses and contribute to the development of therapeutic strategies based on endogenous resolution

    Development of aggression subtypes from childhood to adolescence:a group-based multi-trajectory modelling perspective

    Get PDF
    The persistence of elevated subtypes of aggression beginning in childhood have been associated with long-term maladaptive outcomes. Yet it remains unclear to what extent there are clusters of individuals following similar developmental trajectories across forms (i.e., physical and indirect) and functions (i.e., proactive and reactive) of aggression. We aimed to identify groups of children with distinct profiles of the joint development of forms and functions of aggression and to identify risk factors for group membership. A sample of 787 children was followed from birth to adolescence. Parent and teacher reports, and standardised assessments were used to measure two forms and two functions of aggressive behaviour, between six and 13 years of age along with preceding child, maternal, and family-level risk-factors. Analyses were conducted using a group-based multi-trajectory modelling approach. Five trajectory groups emerged: non-aggressors, low-stable, moderate-engagers, high-desisting, and high-chronic. Coercive parenting increased membership risk in the moderate-engagers and high-chronic groups. Lower maternal IQ increased membership risk in both high-desisting and high-chronic groups, whereas maternal depression increased membership risk in the high-desisting group only. Never being breastfed increased membership risk in the moderate-engagers group. Boys were at greater risk for belonging to groups displaying elevated aggression. Individuals with chronic aggression problems use all subtypes of aggression. Risk factors suggest that prevention programs should start early in life and target mothers with lower IQ. Strategies to deal with maternal depression and enhance positive parenting while replacing coercive parenting tactics should be highlighted in programming efforts

    Prognostic gene expression signature for high-grade serous ovarian cancer.

    Get PDF
    BACKGROUND: Median overall survival (OS) for women with high-grade serous ovarian cancer (HGSOC) is ∼4 years, yet survival varies widely between patients. There are no well-established, gene expression signatures associated with prognosis. The aim of this study was to develop a robust prognostic signature for OS in patients with HGSOC. PATIENTS AND METHODS: Expression of 513 genes, selected from a meta-analysis of 1455 tumours and other candidates, was measured using NanoString technology from formalin-fixed paraffin-embedded tumour tissue collected from 3769 women with HGSOC from multiple studies. Elastic net regularization for survival analysis was applied to develop a prognostic model for 5-year OS, trained on 2702 tumours from 15 studies and evaluated on an independent set of 1067 tumours from six studies. RESULTS: Expression levels of 276 genes were associated with OS (false discovery rate < 0.05) in covariate-adjusted single-gene analyses. The top five genes were TAP1, ZFHX4, CXCL9, FBN1 and PTGER3 (P < 0.001). The best performing prognostic signature included 101 genes enriched in pathways with treatment implications. Each gain of one standard deviation in the gene expression score conferred a greater than twofold increase in risk of death [hazard ratio (HR) 2.35, 95% confidence interval (CI) 2.02-2.71; P < 0.001]. Median survival [HR (95% CI)] by gene expression score quintile was 9.5 (8.3 to -), 5.4 (4.6-7.0), 3.8 (3.3-4.6), 3.2 (2.9-3.7) and 2.3 (2.1-2.6) years. CONCLUSION: The OTTA-SPOT (Ovarian Tumor Tissue Analysis consortium - Stratified Prognosis of Ovarian Tumours) gene expression signature may improve risk stratification in clinical trials by identifying patients who are least likely to achieve 5-year survival. The identified novel genes associated with the outcome may also yield opportunities for the development of targeted therapeutic approaches

    Development and Validation of the Gene Expression Predictor of High-grade Serous Ovarian Carcinoma Molecular SubTYPE (PrOTYPE)

    Get PDF
    PURPOSE: Gene-expression-based molecular subtypes of high-grade serous tubo-ovarian cancer (HGSOC), demonstrated across multiple studies, may provide improved stratification for molecularly targeted trials. However, evaluation of clinical utility has been hindered by non-standardized methods which are not applicable in a clinical setting. We sought to generate a clinical-grade minimal gene-set assay for classification of individual tumor specimens into HGSOC subtypes and confirm previously reported subtype-associated features. EXPERIMENTAL DESIGN: Adopting two independent approaches, we derived and internally validated algorithms for subtype prediction using published gene-expression data from 1650 tumors. We applied resulting models to NanoString data on 3829 HGSOCs from the Ovarian Tumor Tissue Analysis Consortium. We further developed, confirmed, and validated a reduced, minimal gene-set predictor, with methods suitable for a single patient setting. RESULTS: Gene-expression data was used to derive the Predictor of high-grade-serous Ovarian carcinoma molecular subTYPE (PrOTYPE) assay. We established a de facto standard as a consensus of two parallel approaches. PrOTYPE subtypes are significantly associated with age, stage, residual disease, tumor infiltrating lymphocytes, and outcome. The locked-down clinical-grade PrOTYPE test includes a model with 55 genes that predicted gene-expression subtype with >95% accuracy that was maintained in all analytical and biological validations. CONCLUSIONS: We validated the PrOTYPE assay following the Institute of Medicine guidelines for the development of omics-based tests. This fully defined and locked-down clinical-grade assay will enable trial design with molecular subtype stratification and allow for objective assessment of the predictive value of HGSOC molecular subtypes in precision medicine applications

    Exome Chip Meta-analysis Fine Maps Causal Variants and Elucidates the Genetic Architecture of Rare Coding Variants in Smoking and Alcohol Use

    Get PDF
    BACKGROUND: Smoking and alcohol use have been associated with common genetic variants in multiple loci. Rare variants within these loci hold promise in the identification of biological mechanisms in substance use. Exome arrays and genotype imputation can now efficiently genotype rare nonsynonymous and loss of function variants. Such variants are expected to have deleterious functional consequences and to contribute to disease risk. METHODS: We analyzed similar to 250,000 rare variants from 16 independent studies genotyped with exome arrays and augmented this dataset with imputed data from the UK Biobank. Associations were tested for five phenotypes: cigarettes per day, pack-years, smoking initiation, age of smoking initiation, and alcoholic drinks per week. We conducted stratified heritability analyses, single-variant tests, and gene-based burden tests of nonsynonymous/loss-of-function coding variants. We performed a novel fine-mapping analysis to winnow the number of putative causal variants within associated loci. RESULTS: Meta-analytic sample sizes ranged from 152,348 to 433,216, depending on the phenotype. Rare coding variation explained 1.1% to 2.2% of phenotypic variance, reflecting 11% to 18% of the total single nucleotide polymorphism heritability of these phenotypes. We identified 171 genome-wide associated loci across all phenotypes. Fine mapping identified putative causal variants with double base-pair resolution at 24 of these loci, and between three and 10 variants for 65 loci. Twenty loci contained rare coding variants in the 95% credible intervals. CONCLUSIONS: Rare coding variation significantly contributes to the heritability of smoking and alcohol use. Fine-mapping genome-wide association study loci identifies specific variants contributing to the biological etiology of substance use behavior.Peer reviewe
    corecore