1,078 research outputs found

    Erosion characteristics and horizontal variability for small erosion depths in the Sacramento-San Joaquin River Delta, California, USA

    Get PDF
    Erodibility of cohesive sediment in the Sacramento-San Joaquin River Delta (Delta) was investigated with an erosion microcosm. Erosion depths in the Delta and in the microcosm were estimated to be about one floc diameter over a range of shear stresses and times comparable to half of a typical tidal cycle. Using the conventional assumption of horizontally homogeneous bed sediment, data from 27 of 34 microcosm experiments indicate that the erosion rate coefficient increased as eroded mass increased, contrary to theory. We believe that small erosion depths, erosion rate coefficient deviation from theory, and visual observation of horizontally varying biota and texture at the sediment surface indicate that erosion cannot solely be a function of depth but must also vary horizontally. We test this hypothesis by developing a simple numerical model that includes horizontal heterogeneity, use it to develop an artificial time series of suspended-sediment concentration (SSC) in an erosion microcosm, then analyze that time series assuming horizontal homogeneity. A shear vane was used to estimate that the horizontal standard deviation of critical shear stress was about 30% of the mean value at a site in the Delta. The numerical model of the erosion microcosm included a normal distribution of initial critical shear stress, a linear increase in critical shear stress with eroded mass, an exponential decrease of erosion rate coefficient with eroded mass, and a stepped increase in applied shear stress. The maximum SSC for each step increased gradually, thus confounding identification of a single well-defined critical shear stress as encountered with the empirical data. Analysis of the artificial SSC time series with the assumption of a homogeneous bed reproduced the original profile of critical shear stress, but the erosion rate coefficient increased with eroded mass, similar to the empirical data. Thus, the numerical experiment confirms the small-depth erosion hypothesis. A linear model of critical shear stress and eroded mass is proposed to simulate small-depth erosion, assuming that the applied and critical shear stresses quickly reach equilibrium

    Body odor quality predicts behavioral attractiveness in humans

    Get PDF
    Growing effort is being made to understand how different attractive physical traits co-vary within individuals, partly because this might indicate an underlying index of genetic quality. In humans, attention has focused on potential markers of quality such as facial attractiveness, axillary odor quality, the second-to-fourth digit (2D:4D) ratio and body mass index (BMI). Here we extend this approach to include visually-assessed kinesic cues (nonverbal behavior linked to movement) which are statistically independent of structural physical traits. The utility of such kinesic cues in mate assessment is controversial, particularly during everyday conversational contexts, as they could be unreliable and susceptible to deception. However, we show here that the attractiveness of nonverbal behavior, in 20 male participants, is predicted by perceived quality of their axillary body odor. This finding indicates covariation between two desirable traits in different sensory modalities. Depending on two different rating contexts (either a simple attractiveness rating or a rating for long-term partners by 10 female raters not using hormonal contraception), we also found significant relationships between perceived attractiveness of nonverbal behavior and BMI, and between axillary odor ratings and 2D:4D ratio. Axillary odor pleasantness was the single attribute that consistently predicted attractiveness of nonverbal behavior. Our results demonstrate that nonverbal kinesic cues could reliably reveal mate quality, at least in males, and could corroborate and contribute to mate assessment based on other physical traits

    Estimating the regional distribution of men who have sex with men (MSM) based on Internet surveys

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Measurement of prevalence and incidence of infections in a hard to reach population like men who have sex with men (MSM) is hampered by its unknown size and regional distribution. Population-based surveys have recently been used to estimate the total number of MSM, but these surveys are usually not large enough to measure regional differences in the proportion of MSM in the population. We explored the use of the proportional regional distribution of participants of large internet-based surveys among MSM from Germany to estimate the regional distribution of MSM in Germany.</p> <p>Methods</p> <p>We compared participants from two separate MSM behavioural surveys with each other and with the distribution of user profiles of the largest contact and dating website for gay and other MSM in Germany in terms of the representativeness of the regional distribution. In addition, we compared the regional distribution of reportedly HIV positive survey participants with the regional distribution of HIV notifications within the national surveillance system that can be attributed to transmission through homosexual contacts.</p> <p>Results</p> <p>Regional distribution of survey participants was almost identical in both surveys, despite little overlap between survey participants. Slight discrepancies between surveys and user profiles could be observed. Proportional regional distribution of survey participants with HIV diagnosis resembled national surveillance data.</p> <p>Conclusion</p> <p>Considering the difficulties to obtain representative data by other sampling methods for "hidden" populations like MSM, internet-based surveys may provide an easy and low cost tool to estimate the regional population distribution – at least in Western post-industrialized countries. Some uncertainties remain about the exact place of residence of MSM in larger cities or catchment areas of these cities. Slightly different results from different datasets may be due to unequal popularity of MSM websites in different regions. The total population size of the MSM population can be estimated based on e.g. data from representative national population surveys. Both estimates can then be combined to calculate the absolute size of regional MSM populations.</p

    Biocompatibility of Common Implantable Sensor Materials in a Tumor Xenograft Model

    Get PDF
    Real-time monitoring of tumor microenvironment parameters using an implanted biosensor could provide valuable information on the dynamic nature of a tumor's biology and its response to treatment. However, following implantation biosensors may lose functionality due to biofouling caused by the foreign body response (FBR). This study developed a novel tumor xenograft model to evaluate the potential of six biomaterials (silicon dioxide, silicon nitride, Parylene-C, Nafion, biocompatible EPOTEK epoxy resin, and platinum) to trigger a FBR when implanted into a solid tumor. Biomaterials were chosen based on their use in the construction of a novel biosensor, designed to measure spatial and temporal changes in intra-tumoral O2 , and pH. None of the biomaterials had any detrimental effect on tumor growth or body weight of the murine host. Immunohistochemistry showed no significant changes in tumor necrosis, hypoxic cell number, proliferation, apoptosis, immune cell infiltration, or collagen deposition. The absence of biofouling supports the use of these materials in biosensors; future investigations in preclinical cancer models are required, with a view to eventual applications in humans. To our knowledge this is the first documented investigation of the effects of modern biomaterials, used in the production of implantable sensors, on tumor tissue after implantation. © 2018 The Authors. Journal of Biomedical Materials Research Part B: Applied Biomaterials published by Wiley Periodicals, Inc. J Biomed Mater Res Part B, 2018

    The minimal kinome of Giardia lamblia illuminates early kinase evolution and unique parasite biology

    Get PDF
    Background: The major human intestinal pathogen Giardia lamblia is a very early branching eukaryote with a minimal genome of broad evolutionary and biological interest. Results: To explore early kinase evolution and regulation of Giardia biology, we cataloged the kinomes of three sequenced strains. Comparison with published kinomes and those of the excavates Trichomonas vaginalis and Leishmania major shows that Giardia's 80 core kinases constitute the smallest known core kinome of any eukaryote that can be grown in pure culture, reflecting both its early origin and secondary gene loss. Kinase losses in DNA repair, mitochondrial function, transcription, splicing, and stress response reflect this reduced genome, while the presence of other kinases helps define the kinome of the last common eukaryotic ancestor. Immunofluorescence analysis shows abundant phospho-staining in trophozoites, with phosphotyrosine abundant in the nuclei and phosphothreonine and phosphoserine in distinct cytoskeletal organelles. The Nek kinase family has been massively expanded, accounting for 198 of the 278 protein kinases in Giardia. Most Neks are catalytically inactive, have very divergent sequences and undergo extensive duplication and loss between strains. Many Neks are highly induced during development. We localized four catalytically active Neks to distinct parts of the cytoskeleton and one inactive Nek to the cytoplasm. Conclusions: The reduced kinome of Giardia sheds new light on early kinase evolution, and its highly divergent sequences add to the definition of individual kinase families as well as offering specific drug targets. Giardia's massive Nek expansion may reflect its distinctive lifestyle, biphasic life cycle and complex cytoskeleton

    Exploratory factor analysis of graphical features for link prediction in social networks

    Get PDF
    Social Networks attract much attention due to their ability to replicate social interactions at scale. Link prediction, or the assessment of which unconnected nodes are likely to connect in the future, is an interesting but non-trivial research area. Three approaches exist to deal with the link prediction problem: feature-based models, Bayesian probabilistic models, probabilistic relational models. In feature-based methods, graphical features are extracted and used for classification. Usually, these features are subdivided into three feature groups based on their formula. Some formulas are extracted based on neighborhood graph traverse. Accordingly, there exists three groups of features, neighborhood features, path-based features, node-based features. In this paper, we attempt to validate the underlying structure of topological features used in feature-based link prediction. The results of our analysis indicate differing results from the prevailing grouping of these features, which indicates that current literatures\u27 classification of feature groups should be redefined. Thus, the contribution of this work is exploring the factor loading of graphical features in link prediction in social networks. To the best of our knowledge, there is no prior studies had addressed it
    corecore