1,722 research outputs found
Bayesian optimization for materials design
We introduce Bayesian optimization, a technique developed for optimizing
time-consuming engineering simulations and for fitting machine learning models
on large datasets. Bayesian optimization guides the choice of experiments
during materials design and discovery to find good material designs in as few
experiments as possible. We focus on the case when materials designs are
parameterized by a low-dimensional vector. Bayesian optimization is built on a
statistical technique called Gaussian process regression, which allows
predicting the performance of a new design based on previously tested designs.
After providing a detailed introduction to Gaussian process regression, we
introduce two Bayesian optimization methods: expected improvement, for design
problems with noise-free evaluations; and the knowledge-gradient method, which
generalizes expected improvement and may be used in design problems with noisy
evaluations. Both methods are derived using a value-of-information analysis,
and enjoy one-step Bayes-optimality
Spontaneous and deliberate future thinking: A dual process account
© 2019 Springer Nature.This is the final published version of an article published in Psychological Research, licensed under a Creative Commons Attri-bution 4.0 International License. Available online at: https://doi.org/10.1007/s00426-019-01262-7.In this article, we address an apparent paradox in the literature on mental time travel and mind-wandering: How is it possible that future thinking is both constructive, yet often experienced as occurring spontaneously? We identify and describe two ‘routes’ whereby episodic future thoughts are brought to consciousness, with each of the ‘routes’ being associated with separable cognitive processes and functions. Voluntary future thinking relies on controlled, deliberate and slow cognitive processing. The other, termed involuntary or spontaneous future thinking, relies on automatic processes that allows ‘fully-fledged’ episodic future thoughts to freely come to mind, often triggered by internal or external cues. To unravel the paradox, we propose that the majority of spontaneous future thoughts are ‘pre-made’ (i.e., each spontaneous future thought is a re-iteration of a previously constructed future event), and therefore based on simple, well-understood, memory processes. We also propose that the pre-made hypothesis explains why spontaneous future thoughts occur rapidly, are similar to involuntary memories, and predominantly about upcoming tasks and goals. We also raise the possibility that spontaneous future thinking is the default mode of imagining the future. This dual process approach complements and extends standard theoretical approaches that emphasise constructive simulation, and outlines novel opportunities for researchers examining voluntary and spontaneous forms of future thinking.Peer reviewe
Genes Suggest Ancestral Colour Polymorphisms Are Shared across Morphologically Cryptic Species in Arctic Bumblebees
email Suzanne orcd idCopyright: © 2015 Williams et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Energy cost and return for hunting in African wild dogs and Cheetahs
African wild dogs (Lycaon pictus) are reported to hunt with energetically costly long chase distances. We used high-resolution GPS and inertial technology to record 1,119 high-speed chases of all members of a pack of six adult African wild dogs in northern Botswana. Dogs performed multiple short, high-speed, mostly unsuccessful chases to capture prey, while cheetahs (Acinonyx jubatus) undertook even shorter, higher-speed hunts. We used an energy balance model to show that the energy return from group hunting and feeding substantially outweighs the cost of multiple short chases, which indicates that African wild dogs are more energetically robust than previously believed. Comparison with cheetah illustrates the trade-off between sheer athleticism and high individual kill rate characteristic of cheetahs, and the energetic robustness of frequent opportunistic group hunting and feeding by African wild dogs
Convergence of sparse variational inference in gaussian processes regression
Gaussian processes are distributions over functions that are versatile and mathematically convenient priors in Bayesian modelling. However, their use is often impeded for data with large numbers of observations, N, due to the cubic (in N) cost of matrix operations used in exact inference. Many solutions have been proposed that rely on M << N inducing variables to form an approximation at a cost of O(NM^2). While the computational cost appears linear in N, the true complexity depends on how M must scale with N to ensure a certain quality of the approximation. In this work, we investigate upper and lower bounds on how M needs to grow with N to ensure high quality approximations. We show that we can make the KL-divergence between the approximate model and the exact posterior arbitrarily small for a Gaussian-noise regression model with M<<N. Specifically, for the popular squared exponential kernel and D-dimensional Gaussian distributed covariates, M=O((log N)^D) suffice and a method with an overall computational cost of O(N(log N)^{2D}(\log\log N)^2) can be used to perform inference
Search For Heavy Pointlike Dirac Monopoles
We have searched for central production of a pair of photons with high
transverse energies in collisions at TeV using of data collected with the D\O detector at the Fermilab Tevatron in
1994--1996. If they exist, virtual heavy pointlike Dirac monopoles could
rescatter pairs of nearly real photons into this final state via a box diagram.
We observe no excess of events above background, and set lower 95% C.L. limits
of on the mass of a spin 0, 1/2, or 1 Dirac
monopole.Comment: 12 pages, 4 figure
Multiple reassortment events in the evolutionary history of H1N1 influenza A virus since 1918
The H1N1 subtype of influenza A virus has caused substantial morbidity and mortality in humans, first documented in the global pandemic of 1918 and continuing to the present day. Despite this disease burden, the evolutionary history of the A/H1N1 virus is not well understood, particularly whether there is a virological basis for several notable epidemics of unusual severity in the 1940s and 1950s. Using a data set of 71 representative complete genome sequences sampled between 1918 and 2006, we show that segmental reassortment has played an important role in the genomic evolution of A/H1N1 since 1918. Specifically, we demonstrate that an A/H1N1 isolate from the 1947 epidemic acquired novel PB2 and HA genes through intra-subtype reassortment, which may explain the abrupt antigenic evolution of this virus. Similarly, the 1951 influenza epidemic may also have been associated with reassortant A/H1N1 viruses. Intra-subtype reassortment therefore appears to be a more important process in the evolution and epidemiology of H1N1 influenza A virus than previously realized
Assessing the impact of a health intervention via user-generated Internet content
Assessing the effect of a health-oriented intervention by traditional epidemiological methods is commonly based only on population segments that use healthcare services. Here we introduce a complementary framework for evaluating the impact of a targeted intervention, such as a vaccination campaign against an infectious disease, through a statistical analysis of user-generated content submitted on web platforms. Using supervised learning, we derive a nonlinear regression model for estimating the prevalence of a health event in a population from Internet data. This model is applied to identify control location groups that correlate historically with the areas, where a specific intervention campaign has taken place. We then determine the impact of the intervention by inferring a projection of the disease rates that could have emerged in the absence of a campaign. Our case study focuses on the influenza vaccination program that was launched in England during the 2013/14 season, and our observations consist of millions of geo-located search queries to the Bing search engine and posts on Twitter. The impact estimates derived from the application of the proposed statistical framework support conventional assessments of the campaign
The activation of eco-driving mental models: can text messages prime drivers to use their existing knowledge and skills?
Eco-driving campaigns have traditionally assumed that drivers lack the necessary knowledge and skills and that this is something that needs rectifying. Therefore, many support systems have been designed to closely guide drivers and fine-tune their proficiency. However, research suggests that drivers already possess a substantial amount of the necessary knowledge and skills regarding eco-driving. In previous studies, participants used these effectively when they were explicitly asked to drive fuel-efficiently. In contrast, they used their safe driving skills when they were instructed to drive as they would normally. Hence, it is assumed that many drivers choose not to engage purposefully in eco-driving in their everyday lives. The aim of the current study was to investigate the effect of simple, periodic text messages (nine messages in 2 weeks) on drivers’ eco- and safe driving performance. It was hypothesised that provision of eco-driving primes and advice would encourage the activation of their eco-driving mental models and that comparable safety primes increase driving safety. For this purpose, a driving simulator experiment was conducted. All participants performed a pre-test drive and were then randomly divided into four groups, which received different interventions. For a period of 2 weeks, one group received text messages with eco-driving primes and another group received safety primes. A third group received advice messages on how to eco-drive. The fourth group were instructed by the experimenter to drive fuel-efficiently, immediately before driving, with no text message intervention. A post-test drive measured behavioural changes in scenarios deemed relevant to eco- and safe driving. The results suggest that the eco-driving prime and advice text messages did not have the desired effect. In comparison, asking drivers to drive fuel-efficiently led to eco-driving behaviours. These outcomes demonstrate the difficulty in changing ingrained habits. Future research is needed to strengthen such messages or activate existing knowledge and skills in other ways, so driver behaviour can be changed in cost-efficient ways
- …
