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Abstract

Gaussian processes are distributions over functions that are versatile and mathematically
convenient priors in Bayesian modelling. However, their use is often impeded for data with
large numbers of observations, N , due to the cubic (in N) cost of matrix operations used in
exact inference. Many solutions have been proposed that rely on M � N inducing variables
to form an approximation at a cost of O(NM2). While the computational cost appears
linear in N , the true complexity depends on how M must scale with N to ensure a certain
quality of the approximation. In this work, we investigate upper and lower bounds on how
M needs to grow with N to ensure high quality approximations. We show that we can make
the KL-divergence between the approximate model and the exact posterior arbitrarily small
for a Gaussian-noise regression model with M � N . Specifically, for the popular squared
exponential kernel and D-dimensional Gaussian distributed covariates, M = O((logN)D)
suffice and a method with an overall computational cost of O

(
N(logN)2D(log logN)2

)
can

be used to perform inference.

Keywords: Gaussian processes, approximate inference, variational methods, Bayesian
non-parameterics, kernel methods

1. Introduction

Gaussian process (GP) priors are commonly used in Bayesian modelling due to their math-
ematical convenience and empirical success. The resulting models give flexible mean predic-
tions, as well as useful estimates of uncertainty. GP priors are often used with a Gaussian
likelihood for regression tasks, as the Bayesian posterior can be computed in closed form in
this case. Additionally, in many instances, the kernel is differentiable with respect to hyper-
parameters, in which case hyperparameters can be efficiently learned using gradient-based
optimization by maximizing the marginal likelihood, which can be computed analytically
(also known as empirical Bayes, or type-II maximum likelihood). However, standard im-
plementations of exact inference in Gaussian process regression models require storing and
inverting a kernel matrix, imposing an O(N2) memory cost and an O(N3) computational
cost, where N is the number of training examples. These computational constraints have
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pushed researchers to adopt approximate methods in order to allow Gaussian process models
to scale to large data sets.

Sparse methods (e.g. Seeger et al., 2003; Snelson and Ghahramani, 2006; Titsias, 2009b)
rely on a set of inducing variables to represent the posterior distribution. While these
methods have been widely adopted in research and application areas, there is a limited
theoretical understanding of the effects of these approximations on the quality of posterior
predictions, as well as what biases are introduced into hyperparameter selection when using
approximations to the marginal likelihood. In this work, we aim to characterize the accuracy
of sparse approximations. If all of the key properties of the exact model, i.e. the predictive
mean and uncertainties and the marginal likelihood, are maintained by very sparse models,
then a great deal of computation can be saved through these approximations.

We focus on the case of sparse inference in the variational framework of Titsias (2009b).
We analyze the relationship between the level of sparsity used in performing inference, which
dictates the computational cost, and the quality of the approximate posterior distribution.
In particular, we analyze how many inducing variables should be used in order for the KL-
divergence between the approximate posterior and the Bayesian posterior to be small. This
offers theoretical insight into the trade-off between computation and quality of inference
within the variational framework. From a practical perspective, our work suggests new
methods for choosing which inducing variables to use to construct the approximation and
provides theoretically grounded insight into the types of problems to which the sparse
variational approach is particularly well-suited.

1.1 Our Contributions

• We derive bounds on the quality of variational inference in Gaussian process models.
When our bounds are applied in the case of the squared exponential (SE) kernel and
Gaussian or compactly supported inputs, we prove that the variational approximation
can be made arbitrarily close to the true posterior with arbitrarily high probability
using O((logN)D) inducing variables, where D is the dimensionality of the training
inputs, leading to an overall computational cost of O(N(logN)2D(log logN)2). Note
that we consider D fixed throughout, implying a scaling in N that is nearly linear,
i.e. O(N1+ε), ∀ε > 0.

• Our bounds measure the discrepancy to the true posterior using the KL-divergence
between the approximate and exact posteriors. We also show that this implies con-
vergence of the point-wise predictive means and variances.

• We show that theoretical guarantees on the quality of matrix approximation for ex-
isting methods for selecting regressors in sparse kernel ridge regression can be directly
translated into guarantees on variational sparse GP regression. We demonstrate this
for ridge leverage scores.

• We derive lower bounds on the number of inducing variables needed to ensure that the
KL-divergence remains small. For the SE kernel and Gaussian covariate distribution,
these lower bounds have the same dependence on the size of the data set as the upper
bounds.
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• Based on the theoretical results, we provide recommendations on how to select induc-
ing variables in practice, and demonstrate empirical improvements.

This paper is an extension of the work Burt et al. (2019) presented at ICML 2019.

1.2 Overview of this Paper

In Section 2 we introduce notation and review the Gaussian process regression model, as
well as sparse variational inference for Gaussian process models. In Section 3, we discuss
practical considerations regarding assessing the quality of sparse variational inference using
upper bounds on the log marginal likelihood that can be computed after observing a data set.
In Section 4, we prove our main results, which bound the quality of the sparse approximate
posterior, as measured by the KL-divergence. In order to do this, we consider methods
for selecting inducing inputs inspired by methods used to obtain theoretical guarantees on
sparse kernel ridge regression. Section 5 considers specific, commonly studied kernels and
covariate distributions and investigates the implications of our results in these instances. We
provide concrete computational complexities for finding arbitrarily accurate approximations
to GPs. In Section 6, we consider the inverse problem, and show that in certain instances
the KL-divergence will be large unless the number of inducing variables increases sufficiently
quickly as a function of the size of the data set. Section 7 discusses practical insights and
limitations of the theory as applied to real-world problems.

2. Background and Notation

In this section, we review exact inference in Gaussian process models, as well as sparse
methods for approximate inference in these models. We particularly focus on the formu-
lation of sparse methods based on variational inference (Titsias, 2009b). Throughout the
paper, we use boldface letters to denote random variables, and the same letter in non-bold
to denote a realization of this random variable. We follow the standard shorthand notation
adopted in many Bayesian machine learning papers and denote probability densities by
lower case letters p and q, with the distribution to which they are associated inferred by
the name of the argument; e.g. p(X, y) is the density of a joint distribution over random
variables X and y evaluated at X = X and y = y.

2.1 Gaussian Processes

A Gaussian process is a collection of real-valued random variables indexed by a set X , such
that any finite collection of these random variables is jointly Gaussian distributed. While
most commonly X is a subset of RD, Gaussian processes can be indexed by other sets. Such
a process can be viewed as defining a distribution over functions f : X → R, for which the
distribution of function values for a finite set of inputs is Gaussian.

A procedure for specifying the first two moments of any finite marginal distribution in a
consistent manner defines a GP. This can be done by selecting a mean function µ : X → R
and a symmetric, positive semi-definite covariance function k : X × X → R. The finite
dimensional marginal indexed by X = (x1, . . . , xN )T ⊂ X , denoted fX , is distributed as

fX ∼ N (µX ,Kff) , (1)
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with µX = (µ(x1), . . . , µ(xN ))T and Kff an N ×N matrix with [Kff]n,n′ = k(xn, xn′). Prop-
erties such as smoothness, variance and characteristic lengthscale of functions that are
sampled from the GP are determined by the covariance function. The covariance func-
tion is often parameterized in such a way that these properties can be adjusted based on
properties of the observed data.

2.2 Gaussian Process Regression

In this work we perform Bayesian regression using a Gaussian process as the prior dis-
tribution over the function we want to learn. We observe a data set of N training ex-
amples, D = {(xn, yn)}Nn=1 with xn ∈ X and yn ∈ R and want to infer a posterior dis-
tribution over functions f : X → R that relate the inputs to the outputs. We define
X = (x1, . . . , xN )T, y = (y1, . . . , yN )T and fX = (f(x1), · · · f(xN ))T. More generally for any
finite, set X ′ ⊂ X , |X ′| = S <∞, which we assume has a fixed ordering, we will use fX′ to
denote the (random) vector in RS , formed by considering the Gaussian process at indices
x ∈ X ′.

We specify our Bayesian model through a prior and likelihood. We place a GP prior,
which for notational convenience we assume has zero mean function i.e. µ ≡ 0, on the
function f so that

f ∼ GP(0, k). (2)

To allow for deviations from f in the observations, we model the data y as a noisy observation
of this process through the likelihood

y | fX ∼ N (fX , σ
2I) , (3)

where the noise variance σ2, is a model hyperparameter and I is an N ×N identity matrix.

Since the likelihood and the prior are conjugate in this model, Bayesian inference can
be performed in closed form. The posterior density over the latent function values at any
finite collection of T new data points X? = (x?1, · · · , x?T )T is given by

p(fX? | D) =

∫
fX∈RN

p(fX? , fX | D) dfX

=

∫
fX∈RN

p(fX? | fX)p(fX | D) dfX . (4)

Both p(fX? | fX) and p(fX | D) are Gaussian densities and the marginal distribution of a
Gaussian is Gaussian, so p(fX? | D) is also a Gaussian density. The posterior predictive
distribution over the inputs fX? has mean vector and covariance matrix

µ̂? = K?f(Kff + σ2I)−1y and Σ̂?? = K?? −K?f(Kff + σ2I)−1KT
?f, (5)

where K?f is T × N matrix with [K?f]t,n = k(x?t , xn) and K?? is a T × T matrix with
[K??]t,t′ = k(x?t , x

?
t′).

The marginal likelihood is of interest in Bayesian models for selecting the properties of
the model, which are determined by hyperparameters. Point estimates of model hyperpa-
rameters are commonly obtained by maximizing the marginal likelihood with respect to the

4



Convergence of Sparse VI in GP Regression

noise variance σ2, and any parameters of the prior covariance function k. In the case of
conjugate regression described above, the log marginal likelihood takes the form

log p(y) = −1

2
log det(Kff + σ2I)− 1

2
yT(Kff + σ2I)−1y − N

2
log 2π. (6)

The quadratic term measures how well the data y lines up with degrees of variation that
are allowed under the prior. The log-determinant term measures how much variation there
is in the prior, and penalizes priors which are widely spread. The combination of these
terms in the log marginal likelihood balances the ability of the model to fit the data with
model complexity, which allows a suitable model to be chosen; see Rasmussen and Williams
(2006) for more discussion of the marginal likelihood as a tool for model selection as well
as an introduction to Gaussian processes.

Despite closed-form expressions for both the predictive posterior (Eq. 5) and marginal
likelihood (Eq. 6), exact inference in Gaussian process regression models is impractical for
large data sets due to the cost of storing and inverting the kernel matrix Kff, leading to
O(N2) memory and O(N3) time complexities. Sparse approximations have been widely
adopted to address this issue.

2.3 Approximate Inference for Gaussian Processes

Approximate inference in Gaussian process regression is performed for a different reason
than in most Bayesian models. Approximate inference is usually applied when the ex-
act posterior is analytically intractable. In our case, we can analytically write down the
posterior, but the cost of computation is often prohibitive. The methods we discuss here
all approximate the posterior with a different Gaussian process which has more favorable
computational properties. As this approximate posterior has a similar form to the exact
posterior, and we can control the trade-off between accuracy and computation, it is plausible
that our approximation may be very accurate.

2.3.1 Inducing Variable Methods

The large cost of computing the posterior GP comes from needing to infer a Gaussian
distribution for the function values at all N input locations. Sparse approximations (Seeger
et al., 2003; Snelson and Ghahramani, 2006; Titsias, 2009b) avoid this cost by instead
computing an approximate posterior that only depends on the data through the process at
M � N locations.

The aim of these methods is to compress the combined effect of a large number of
input and output pairs into a distribution over function values at a small set of inputs. In
regions where data is dense, there is often redundant information about what the function
is actually doing, so little is lost in performing this approximation. The selected input
locations and their corresponding function values are named inducing inputs and outputs
respectively, and together are named inducing points. Later, it was suggested that more
general linear transformations of the process could also be used to compress knowledge
into (Lázaro-Gredilla and Figueiras-Vidal, 2009). We generally refer to these approaches as
inducing variable methods. In all of these methods, a low-rank matrix appears in place of
Kff in the computation of the posterior predictive and log marginal likelihood. This matrix
can be manipulated with a much lower computational cost than working with Kff directly.
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The success of inducing variable methods depends heavily on which M random variables
are chosen to represent the knowledge about the function f . Because in this work we are
concerned with characterizing how large M should be, we need a good method for choosing
the inducing variables, as well as a meaningful criterion for judging the quality of the
resulting approximation. The variational formulation of Titsias (2009b) is of particular
interest, as it uses a well-defined divergence for characterizing the quality of the posterior,
which can also be used as a guide for selecting the inducing variables.

2.3.2 The Variational Formulation

Variational inference proceeds by defining a family of candidate distributions Q, and then
selecting the distribution Q ∈ Q that minimizes the KL-divergence between the approxima-
tion and the posterior. In practice, elements of Q are parameterized and the approximate
posterior is selected by choosing an initial approximation which is then refined by finding
a local minimum of the KL-divergence as a function of the variational parameters. In vari-
ational GP methods (Titsias, 2009b; Hensman et al., 2013) Q consists of GPs with finite
dimensional marginal densities of the form

q(fX′ , U) = q(U)p(fX′ |U) , (7)

for any X ′ ⊂ X , |X ′| <∞, where q is the density of the approximate posterior at this collec-
tion of points, and p(fX′ |U) is the density of the prior distribution of fX′ at fX′ conditioned
on the random variables U evaluated at U = U . In inducing point approximations, we take
the inducing variables to be point evaluations of f , i.e. U = fZ , with inducing inputs Z ⊂ X
and |Z| = M .

As discussed in the previous section, we can also define inducing variables as linear
transformations of the prior process of the form

um =

∫
X
gm(x)f(x) dρ(x),

where we assume ρ is a measure on X defined with respect to an appropriate σ-algebra and
gm ∈ L1(X , ρ). If ρ is taken to be a discrete measure, then these features correspond to
(weighted) sums of inducing points; while other forms of these inducing variables of this
form have been explored (Lázaro-Gredilla and Figueiras-Vidal, 2009; Hensman et al., 2018).

The density q(U) is chosen to be an M -dimensional Gaussian density. This choice
of variational family induces a Gaussian process approximate posterior with mean and
covariance functions

µQ(x) = kf(x)uK−1
uuµU , and kQ(x, x′) = k(x, x′) + kf(x)uK−1

uu (ΣU −Kuu)K−1
uu kuf(x′) ,

where µU,ΣU are the mean and covariance of q(U), Kuu is the M ×M matrix with entries
[Kuu]m,m′ = cov(um,um′), kf(x)u is the row vector with entries [kf(x′)u]m = cov(f(x),um)
and kuf(x) is a column vector defined similarly. The variational parameters consist of Z,
which determines the random variables that are included in U, and µU and ΣU, which
determine the distribution over U.

As is usually the case in variational inference, minimizing the KL-divergence is done
indirectly by maximizing a lower bound to the marginal likelihood, L (also known as the
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evidence lower bound, or ELBO), which has KL[Q||P ] as its slack:

L+ KL[Q||P ] = log p(y) =⇒ argmin
Q∈Q

KL[Q||P ] = argmax
Q∈Q

L(Q) . (8)

where P denotes the (exact) posterior process (Matthews et al., 2016).

When the likelihood is isotropic Gaussian, the unique optimum for the parameters
{µU,ΣU} can be computed in closed form. Using these optimal values, we obtain the
ELBO as it was introduced by Titsias (2009b),

L = −1

2
log det(Qff + σ2I)− 1

2
yT(Qff + σ2I)−1y − N

2
log 2π − 1

2σ2
tr(Kff −Qff) , (9)

where Qff = KT
ufK
−1
uu Kuf and Kuf is the M ×N matrix with entries [Kuf]i,j = cov(ui, f(xj)).

2.3.3 Measuring the Quality of a Variational Approximation

In order to assess whether variational inference leads to an accurate approximation to the
posterior, we need to choose a definition of what it means for an approximation to be
accurate. We choose to measure the quality of an approximation in terms of the KL-
divergence, KL[Q||P ]. This KL-divergence is 0 if and only if the approximate posterior is
equal to the exact posterior. Under this measure, an approximation is considered good if
this KL-divergence is small.

Variational approximations using this KL-divergence have been criticized for failing to
provide guarantees on important quantities such as posterior estimates of the mean and
variance. Huggins et al. (2019) observed that there exist Gaussian distributions such that
the (normalized) difference between the means of the distributions is exponentially large
as a function of the KL-divergence between the two distributions, as is the ratio of the
variances. This has been used to motivate variational approaches based on other notions
of divergence, as well as a more careful assessment of the quality of the approximations
obtained via variational inference (Huggins et al., 2020).

However, in our case of sparse Gaussian process regression, a sufficiently small KL-
divergence between the approximate and true posterior implies bounds on the approxima-
tion quality of the marginal posterior mean and variance function. Proposition 1 states one
such bound:

Proposition 1 Suppose 2KL[Q||P ] ≤ γ ≤ 1
5 . For any x? ∈ X , let µ1 denote the posterior

mean of the variational approximation at x? and µ2 denote the mean of the exact posterior
at x? . Similarly, let σ2

1, σ
2
2 denote the variances of the approximate and exact posteriors at

x?. Then,

|µ1 − µ2| ≤ σ2
√
γ ≤ σ1

√
γ√

1−√3γ
and |1− σ2

1/σ
2
2| <

√
3γ.

The proof (Appendix A) uses that the KL-divergence between any pair of joint dis-
tributions upper bounds the KL-divergence between marginals of these distributions. It
then suffices to bound the difference between the mean and variance of univariate Gaussian
distributions with a small KL-divergence between them.
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Proposition 1 implies that in cases where we can prove the KL-divergence between the
approximate posterior and the exact posterior is very small, we are guaranteed to obtain
similar marginal predictions with the variational approximation to those we would obtain
with the exact model. We note that direct approaches to bounding marginal moments may
lead to tighter bounds on these quantities (e.g. Calandriello et al., 2019), but we prefer to
consider the KL-divergence due to its connection to the variational objective function.

The consequences of a small KL-divergence for hyperparameter selection using the evi-
dence lower bound are more subtle, as both the approximate posterior and exact posterior
depend on model hyperparameters, and it is generally difficult to ensure that the KL-
divergence is uniformly small. We will be discuss these issues in more detail in Section 7.

2.3.4 Computation and Accuracy Trade-Offs

The ELBO (Eq. 9) as well as the corresponding choices for µU and ΣU (needed for making
predictions) can be computed in O(NM2) time, and with O(NM) space. If a good approx-
imation can be found with M � N , the savings in computational cost are large compared
to exact inference. From Eq. (9) we see that the approximation is perfect when choosing
Z = X, as this leads to Qff = Kff. However, no computation is saved in this setting. We
seek a more complete understanding of the trade-off between accuracy and computational
cost when M < N by understanding how M needs to grow with N to ensure an approx-
imation of a certain quality. We derive probabilistic upper and lower bounds on this rate
that depend on kernel properties that can be analyzed before observing any data.

2.4 Spectrum of Kernels and Mercer’s Theorem

In the previous section, we noted that sparse methods imply a low-rank approximation Qff

to the kernel matrix Kff. In order to understand the impact of sparsity on the variational
posterior, it is necessary to understand how well Kff can be approximated by a rank-M
matrix. This depends on the behavior of the eigenvalues of Kff.

For small data sets, an eigendecomposition of Kff allows direct empirical analysis. How-
ever, for problems where sparse approximations are actually of interest, eigendecompositions
are not available within our computational constraints. However, even without access to a
specific data set, we can reason that properties of the training inputs have a large impact
on the properties of the eigendecomposition of the kernel matrix. For example, consider the
case of a squared exponential kernel given by

kSE(x, x′) = v exp

(
−‖x− x

′‖22
2`2

)
,

where v > 0 is the signal variance, which controls the variance of marginal distributions of
the prior and ` > 0 is the lengthscale, which controls how quickly the correlation between
function values decreases as a function of the distance between their inputs. If each covariate
in our training data set is sufficiently far apart relative to the lengthscale, then Kff ≈ vI
and any approximation by low-rank matrix will be of poor quality. Alternatively, if each
covariate takes the same value, Kff is a rank-one matrix and Qff = Kff if a single inducing
point is placed at the location of the covariates. Therefore, in order to make statements
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about the eigenvalues of Kff, we will need to make assumptions about the locations of
training covariates X.

For the remainder of the paper, we assume X = RD (the generalization of most of
our results is straightforward). One method for understanding the eigenvalues of Kff is

to suppose the xi are realizations of random variables xi
i.i.d.∼ µx, where µx is a probability

measure on RD with density p(x). Under this assumption, the limiting properties of the
kernel matrix are captured by the kernel operator, K : L2(RD, µx)→ L2(RD, µx) defined by

(Kg)(x) =

∫
g(x′)k(x, x′)p(x′) dx′. (10)

If the kernel is continuous and bounded, then K has countably many eigenvalues. We denote
these eigenvalues in non-increasing order, so that λ1 ≥ λ2 ≥ · · · ≥ 0. Corresponding to each
non-zero eigenvalue λm there is an eigenfunction φm which can be chosen to be continuous.

Moreover, the collection {φm}∞m=1 can be chosen so that the eigenfunctions all have
unit norm and are mutually orthogonal as elements of L2(RD, µx). In this case, Mercer’s
theorem (Mercer, 1909; König, 1986) states that for sufficiently nice k, for all x ∈ RD such
that p(x) > 0,

k(x, x′) =
∞∑
m=1

λmφm(x)φm(x′) and
∞∑
m=1

λm <∞, (11)

where the sum on the left converges absolutely and uniformly.1

The bounds we derive in the remainder of this work will depend on how rapidly the
eigenvalues {λm}∞m=1 decay. As they are absolutely summable, they must decay faster
than 1/m. The decay of these eigenvalues is closely related to the complexity of the non-
parametric model as well as the generalization properties of the posterior (Micchelli and
Wahba, 1979; Plaskota, 1996). Generally, these eigenvalues decay faster for covariate dis-
tributions that are concentrated in a small volume, and for kernels that give smooth mean
predictors (Widom, 1963, 1964). Therefore, the bounds we prove in Section 4 can be seen
as verifying the intuition that sparse variational approximations can be successfully applied
to models with smooth prior kernels, as well as data sets with densely clustered covariates.

2.5 Inducing Variable Selection and Related Bounds

While the kernel eigenvalues determine how well a kernel matrix can be approximated,
the quality of an actual approximation depends on how the inducing variables are chosen.
Inducing point selection has been widely studied for many methods that require constructing
a Nyström approximation, like sparse Gaussian processes and kernel ridge regression (KRR).
In the simplest case, a subset can be uniformly sampled from the training inputs. Bounds on
the quality of the resulting matrix approximation, and downstream Kernel Ridge Regression
predictor have been found for this case (Bach, 2013; Gittens and Mahoney, 2016) and depend
heavily on assumptions about the covariate distribution and resulting kernel matrix. In the
Gaussian process literature, some specific low-rank parametric approximations based on
spectral information about the kernel operator or matrix have been proposed (Zhu et al.,

1. See Rasmussen and Williams (2006), section 4.3 for more discussion of Mercer’s theorem.
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1997; Ferrari-Trecate et al., 1999; Solin and Särkkä, 2020) together with analysis on the
rate of decrease in error with additional features. However, these methods generally are
either limited in the types of kernels they can be applied to or have higher computational
complexity than inducing point methods.

Heuristic inducing point selection methods have also been proposed in the hope of
improving performance, for instance approximately minimizing tr(Kff − Qff) (Smola and
Schölkopf, 2000), approximating the information gain of including a data point in the pos-
terior (Seeger et al., 2003), or using the k-means centres of the input distribution (Hensman
et al., 2013, 2015).

Two methods from the KRR literature are of particular interest: sampling from a De-
terminantal Point Process (DPP) (Li et al., 2016), and ridge leverage scores (Alaoui and
Mahoney, 2015; Rudi et al., 2015; Calandriello et al., 2017). Theoretical guarantees exist
in the literature for these methods applied to KRR, as well as empirical evidence of their
efficacy compared to uniform sampling. The initial version of this work (Burt et al., 2019)
analyzed convergence of the sparse variational GP posterior and marginal likelihood using
the DPP initialization. Concurrently, Calandriello et al. (2019) used ridge leverage scores
to show the DTC approximation (Seeger et al., 2003; Quiñonero-Candela and Rasmussen,
2005) can be made similar to the true posterior, in terms of pointwise predictive means and
variances. Given the similarity between the DTC and variational posteriors, we include an
analysis of ridge leverage sampling in this extended work to also provide results of conver-
gence of the ELBO, and of the posterior in terms of the KL, which also implies pointwise
convergence of the predictive means and variances.

3. Assessing Variational Inference: a Posteriori Bounds on the
KL-divergence

We begin our investigation by considering how to choose the number of inducing variables for
a specific data set. The simplest approach to assessing whether sufficiently many inducing
points are used is to gradually increase the number of inducing points, and assess how
the evidence lower bound changes with each additional point. If the ELBO increases only
slightly or not at all when an additional inducing point is added, it is tempting to conclude
that the approximate posterior is very close to the exact posterior. However, this is not a
sufficient condition for the approximation to have converged. It could be the case that the
last inducing point placed was not placed effectively, or that increasing from M to M + 1
inducing points has little impact, but increasing to M + c, for some c > 1, inducing points
would lead to significantly better performance if these points are well-placed.

A more refined mechanism for assessing the quality of the variational posterior would
be to consider an upper bound on the KL-divergence that can be computed in similar com-
putational time to the ELBO. Such a bound was proposed by Titsias (2014) and discussed
as a method for assessing convergence in Kim and Teh (2018). In order to state this bound,
we first need to introduce some notation. Let t := tr(Kff−Qff) denote the trace of Kff−Qff

and ‖Kff −Qff‖op denote the operator norm of Kff −Qff, which in this case is equal to the
largest eigenvalue of this matrix as it is symmetric positive semidefinite.
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Lemma 2 (Titsias, 2014) For any y ∈ RN , X ∈ XN , and set of M inducing variables,
U ,

log p(y) ≤ U1 ≤ U2

where

U1 := −1

2
log det(Qff + σ2I)− 1

2
yT(Qff + ‖Kff −Qff‖opI + σ2I)−1y − N

2
log 2π,

and

U2 := −1

2
log det(Qff + σ2I)− 1

2
yT(Qff + tI + σ2I)−1y − N

2
log 2π. (12)

For completeness we give a brief derivation of Lemma 2 in Appendix B, which essentially
follows the derivation of Titsias (2014).

In problems where sparse GP regression is applied, computing the largest eigenvalue of
Kff −Qff in order to compute U1 is computationally prohibitive. However, tr(Kff −Qff) can
be computed in O(NM2), so that U2 can be computed efficiently.

As L = log p(y)−KL[Q||P ], we have

KL[Q||P ] = log p(y)− L ≤ U1 − L ≤ U2 − L. (13)

If the difference between the upper and lower bounds is small, we can therefore be sure that
sufficiently many inducing points are being used for the KL-divergence to be small. This
suggests a refinement of the method for selecting the number of inducing points discussed
earlier: continue to place more inducing points until the difference between the upper and
lower bounds is small.

This raises the question: how many inducing variables do we need for the KL-divergence
to be small in a typical problem? The upper bounds discussed above assess the approxi-
mation a posteriori, i.e. for a given data set and a given approximation. We would like to
characterize the required number of inducing variables for a whole class of problems, before
observing any data. This allows us to understand a priori how much computation is needed
to solve a particular problem. For example, if the number of inducing variables M needs
to grow linearly with the number of observations N , then the O(NM2) cost of the approx-
imation effectively scales cubically in N , i.e. in the same way as the exact implementation.
In Section 4, we show that under intuitive assumptions, the number of inducing points can
be taken to be much smaller than the size of the data set, while still giving approximations
with small KL-divergences.

4. Convergence of Sparse Variational Inference in Gaussian Processes

In this section, we prove upper bounds on the KL-divergence between the approximate
posterior and the exact posterior that depend on the number of inducing points used in
inference, properties of the prior and distributional assumptions on the training covariates.
The proof proceeds in three parts:

1. Derive an upper bound on the KL-divergence for a fixed data set and fixed set of
inducing points that only depends on the quality of the approximation of Kff by Qff.
In order to do this we make assumptions about the data generating process for y.

11
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2. Suggest a method for selecting inducing inputs that obtains a high quality low-rank
approximation to Kff. This yields an upper bound on the KL-divergence depending
only on the eigenvalues of Kff. We consider using a k-determinantal point process or
ridge leverage scores as the initialization method.

3. Relate eigenvalues of the kernel matrix back to those of the corresponding kernel
operator, Eq. (10), through assumptions on the distribution of the covariates.

The second step has precedent in the literature on sparse kernel ridge regression. For
example, Li et al. (2016) consider using a k-DPP to select the sparse regressors. Meanwhile
ridge leverage scores have been studied in the setting of sparse kernel ridge regression and
Gaussian process regression (Alaoui and Mahoney, 2015; Rudi et al., 2015; Calandriello
et al., 2017, 2019), and have been shown to lead to strong statistical guarantees.

The third step in our analysis is similar to the analysis carried out when studying
generalization and approximation bounds for Gaussian processes and other kernel methods.
We use a generalization of a lemma proven in Shawe-Taylor et al. (2005) for this step.

In order to carry out our analysis, especially steps 2 and 3, we will treat X, y and Z
as realizations of random variables X, y and Z and make distributional assumptions about
these random variables. This will allow us to make statements about bounds that hold in
expectation or with fixed probability.

4.1 A-Posteriori Upper Bounds on the KL-divergence Revisited

In Section 3, we considered bounds on the KL-divergence that can be computed for a specific
data set. In this section, we first derive an upper bound on the KL-divergence that only
depends on the squared norm of y, with no additional assumptions on the distribution of
the y (Lemma 3). We then derive a second bound, given in Lemma 4, that improves on
Lemma 3 in expectation, under the stronger assumption that y|Z,X ∼ N (0,Kff+σ2I). This
assumption is satisfied if y is distributed according to the prior model and the distributions
of Z and y are independent, i.e. the inducing inputs are chosen without reference to y.
While our results are stated in terms of inducing points, the proofs generalize without
modification to other inducing variables of the form discussed in Section 2.3.2.

4.1.1 Upper bounds on the KL-divergence

We first consider the case where we make few assumptions on the distribution of y.

Lemma 3 For any y ∈ RN , X ∈ XN , and any Z ∈ XM

KL[Q||P ] ≤ U1 − L ≤
1

2σ2

(
t+

ζ‖y‖22
ζ + σ2

)
≤ 1

2σ2

(
t+

t‖y‖22
t+ σ2

)
,

with t = tr(Kff −Qff) and ζ = ‖Kff −Qff‖op.

The first inequality has already been established (Eq. 13). The remainder of the proof,
given in Appendix C relies on properties of symmetric positive semi-definite (SPSD) matri-
ces.

12
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In most applications, it is reasonable to assume that the data generating process for y
is such that ‖y‖22 ≤ RN almost surely, or at least E

[
‖y‖22

∣∣X,Z] ≤ RN , for some constant
R > 0. For example, if y is formed by evaluating a bounded function corrupted by Gaussian
or bounded noise and the location of the inducing inputs is independent of y then Lemma 3
allows us to bound the conditional expectation E[KL[Q||P ] |X,Z].

4.1.2 Average Case Analysis for the Prior Model

In Lemma 3, we did not make any assumption on the distribution of y. From the Bayesian
perspective, it is natural to make stronger distributional assumptions on y|X. We will see
that in some instances stronger assumptions can lead to a much tighter upper bound than
Lemma 3 that holds in expectation.

The natural candidate distribution for y is the prior distribution, that is y|X ∼ N (0,Kff+
σ2I); if we additionally assume that the distributions of y|X and Z|X are independent, then
this implies y|X,Z ∼ N (0,Kff + σ2I). In this case we can derive upper and lower bounds
on the conditional expectation of the KL-divergence conditioned on X and Z.

Lemma 4 Suppose y|X,Z ∼ N (0,Kff + σ2I). For any X ∈ XN and Z ∈ XM ,

t/(2σ2) ≤ E[KL[Q||P ] |Z = Z,X = X] ≤ t/σ2

where t = tr(Kff−Qff) and Kff and Qff are defined with respect to this X,Z as in Section 2.

Remark 5 Note that if y ∼ N (0,Kff + σ2I),

E
[
‖y‖2

∣∣X = X,Z = Z
]

= E[tr(yTy) |X = X,Z = Z]

= tr(E[yyT |X = X,Z = Z]) = tr(Kff + σ2I).

Therefore, under the strong assumption that y is sampled from the prior model, Lemma 4
gives a significantly stronger bound on the expected KL-divergence as compared to Lemma 3.

Proof Sketch of Lemma 4 Recall that KL[Q||P ] = log p(y) − L. Taking conditional
expectations on both sides,

E[KL[Q||P ] |X = X,Z = Z] = E[log p(y)− L |X = X,Z = Z]. (14)

Let n(y;m,S) denote the density of a (multivariate) Gaussian random variable with mean
m and covariance matrix S evaluated at y. Then,

log p(y) = logn(y; 0,Kff + σ2I)

and

L = log n(y; 0,Qff + σ2I)− 1

2σ2
tr(Kff −Qff).

Using this in Eq. (14),

E[KL[Q||P ] |X = X,Z = Z] = E

[
log

n(y; 0,Kff + σ2I)

n(y; 0,Qff + σ2I)

∣∣∣∣X = X,Z = Z

]
+

t

2σ2

= KL
[
N (0,Kff + σ2I)||N (0,Qff + σ2I)

]
+

t

2σ2
. (15)
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Figure 1: A comparison of the KL-divergence and the lower bound in Lemma 4. For each
value of N we first fix a set of covariates and M = 30 inducing points and then
compute both the trace and KL-divergence (shown in blue), with y ∼ N (0,Kff +
σ2I). The dashed line shows the median of 20 random y’s, while the shaded
region represents 20-80 percentile regions. We then optimize the locations of the
inducing points via gradient descent on the ELBO. As N increases, both the
trace and KL-divergence increase. When the inducing points are selected via
optimizing the ELBO, the KL-divergence is typically somewhat lower than the
lower bound in Lemma 4, while if Z is chosen without reference to y the lower
bound on the expected value of the KL-divergence holds.

The lower bound follows from the non-negativity of KL-divergence. The proof of the up-
per bound (Appendix C) relies on the formula for the KL-divergence between multivariate
Gaussian distributions as well as the identity |tr(AB)| ≤ tr(A)‖B‖op for SPSD matrices A
and B (Tao, 2012, Exercise 1.3.26).

Remark 6 The lower bound in Lemma 4 holds in expectation conditioned on X = X and
Z = Z, with y distributed according to our prior. Common practice is to optimize the
inducing inputs with respect to the ELBO, which depends on y. We may therefore expect
that the KL-divergence will be somewhat smaller than predicted by the average case lower
bound in Lemma 4 after this optimization. This is shown in Fig. 1, where we generate
a data set satisfying the conditions of the lemma, and look at the trace and KL-divergence
before and after gradient based optimization of the ELBO with respect to the inducing inputs.
In Section 6, we establish lower bounds that hold for any y ∈ RN conditioned on X = X
and Z = Z and are therefore applicable to the case when inducing points are selected via
gradient-based methods.
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4.2 Initialization of Inducing Points

In the previous section, we derived upper bounds on E[KL[Q||P ]|X,Z] that depend on
assumptions about the distribution of y. These bounds depend on either the trace or the
largest eigenvalue of Kff−Qff, and will therefore be small if Kff ≈ Qff. We begin this section
with a brief overview of inducing variable selection methods, of which we will analyze two
in the context of sparse variational inference. Using known results on the quality of the
resulting matrix approximations, we can then obtain bounds on the KL-divergence for a
fixed set of training inputs X = X.

4.2.1 Minimizing the upper bounds

We take a brief detour from discussing initializations of inducing inputs to discuss the set
of inducing variables that minimize the upper bounds in Lemmas 3 and 4.

Let Kff = VΛVT, where V = [v1, v2, · · · vN ] is an N × N orthogonal matrix and Λ =
diag(λ̃1, . . . , λ̃N ) is a diagonal matrix of eigenvalues of Kff ordered such that λ̃1 ≥ λ̃2 ≥ · · · ≥
λ̃N ≥ 0. As Kff is SPSD, such a decomposition exists. Define KM = VMΛMVT

M , where VM

is an N ×M matrix containing the first M columns of V and ΛM is an M ×M diagonal
matrix with entries, λ̃1, . . . , λ̃M , in other words KM is the rank-M truncated singular value
decomposition of Kff.

Both the trace and the operator norm are unitarily invariant, so KM is the optimal rank-
M approximation to Kff according to either of these norms.2 In particular, for any rank M
N ×N SPSD matrix A satisfying A ≺ Kff (i.e. Kff−A is SPSD), tr(Kff−KM ) ≤ tr(Kff−A)
and ‖Kff −KM‖op ≤ ‖Kff −A‖op (see Horn and Johnson, 1990, Theorem 7.4.9.1).

As any subset of M inducing variables will lead to a rank-M matrix Qff ≺ Kff this
implies

‖Kff −Qff‖op ≥ ‖Kff −KM‖op = λ̃M+1 and tr(Kff −Qff) ≥ tr(Kff −KM ) =
N∑

m=M+1

λ̃m.

Consider the inducing features defined as linear combinations of the random variables
associated to evaluating the latent function at each observed input location, with weights
coming from the eigenvectors of Kff, i.e.

um =
1

λ̃m

N∑
i=1

vi,mf(xi).

Then,

cov(um,um′)=
1

λ̃mλ̃m′
E

 N∑
i=1

N∑
j=1

vm,jvm′,if(xi)f(xj)

=
1

λ̃mλ̃m′

N∑
i=1

N∑
j=1

vm,ivm′,jk(xi, xj).

The final two sums are the quadratic form, vT
mKffvm′ . As vm is an eigenvector of Kff and

vm is orthogonal to v′m unless m = m′, this simplifies to cov(um, um′) =
δm,m′

λ̃m
. Similarly,

cov(um, f(xn)) =
1

λ̃m
E

[
N∑
i=1

vm,nf(xi)f(xn)

]
=

1

λ̃m

N∑
i=1

vm,nk(xi, xn) =
1

λ̃m
[Kffvm]n = vm,n.

2. While the trace is not generally a matrix norm, it agrees with the norm ‖ · ‖1 as Kff −Qff is SPSD.
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From these expressions, it follows that for these features Kuf = VM and K−1
uu = ΛM .

Therefore, Qff = KM , and these features minimize our upper bounds among any set of M
inducing variables. Unfortunately, computing the matrices Kuf and Kuu in this case involves
computing the first M eigenvalues and eigenvectors of Kff, which lies outside of our desired
computational budget of O(Npoly(M)polylog(N)).

4.2.2 M-Determinantal point processes

We now return to the more practical case of using inducing points for sparse variational
inference. In order to derive non-trivial upper bounds on tr(Kff−Qff) and ‖Kff−Qff‖op, we
need a sufficiently good method for placing inducing points. When using differentiable kernel
functions, many practitioners select the locations of the inducing points with gradient-based
methods by maximizing the ELBO. As this is a high-dimensional, non-convex optimization
algorithm, directly analyzing the result of this procedure is beyond our analysis.

In this section, we assume M inducing points are subsampled from data according to
an approximate M-determinantal point process (M -DPP) (Kulesza and Taskar, 2011) and
use known bounds on the expected value of tr(Kff − Qff).3 We note that if this scheme is
used as an initialization prior to a gradient-based optimization of the evidence lower bound
with respect to the inducing inputs, the resulting KL-divergence will be at least as small,
so our bounds still apply after optimization of variational parameters.

Given an SPSD matrix L, an M -determinantal point process (Kulesza and Taskar, 2011)
with kernel matrix L defines a discrete probability distribution over subsets of theN columns
of L, with positive probability only assigned to subsets of cardinality M . The probability of
any subset of cardinality M is proportional to the determinant of the principal submatrix
formed by selecting those columns and the corresponding rows, that is for any set Z of M
columns of L

Pr(Z = Z) =
det(LZ,Z)∑

|Z′|=M det(LZ′,Z′)
.

where LZ,Z is the principal submatrix of L with columns in Z. For a thorough introduction
to determinantal point processes, as well as an implementation of many sampling methods,
see Gautier et al. (2019).

As the determinant of LZ,Z corresponds to the volume of the parallelepiped in RM

formed by the columns in Z, M -determinantal point processes introduce strong negative
correlations between points sampled. This leads to samples that are more dispersed than
subsets selected uniformly (Fig. 2). This intuition, as well as the following result due to
Belabbas and Wolfe (2009) serves as motivation for using an M -DPP in order to select the
location of inducing points.

Lemma 7 (Belabbas and Wolfe, 2009, Theorem 1) Let L be a SPSD N ×N matrix
with eigenvalues η1 ≥ · · · ≥ ηN ≥ 0. Suppose a set of points are sampled according to an
M -determinantal point process with kernel matrix L. Define the (random) matrix LZ =
LT

Z,NL−1
Z,ZLZ,N where LZ,Z is the M ×M principal submatrix of L with columns in Z and

3. The standard terminology is k-DPP. We use M as this determines the number of inducing points and to
avoid confusion with the kernel function.
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Figure 2: M -Determinantal point processes introduce a strong form of negative correla-
tion between points, leading to samples that appear over-dispersed compared to
uniform sampling. In the top two rows, we show (approximate) samples from a
M -DPP with kernel matrix determined by a SE-kernel with two different length
scales and Gaussian distributed covariates, with 50 points drawn for each sample.
Sampling is performed via MCMC after a greedy initialization. In the bottom
row, we show subsets of size 50 selected uniformly from the covariates.

LN,Z is the N ×M matrix with columns Z. Then,

E[tr(L− LZ)] ≤ (M + 1)

N∑
m=M+1

ηm. (16)

If L = Kff and the inducing points are selected as a subset of data points corresponding to
the columns selected by the M -DPP, then LZ = Qff . This tells us that using an M -DPP
to choose inducing inputs will make E[tr(Kff −Qff ) |X = X] relatively close to its optimal
value of

∑N
m=M+1 λ̃m.

The next important question to address is whether a M -DPP can be sampled with
sufficiently low computational complexity for this to be a practical method for selecting
inducing inputs. Naively computing the probability distribution over all

(
N
M

)
subsets of size

M is prohibitively expensive. Kulesza and Taskar (2011) gave an algorithm that runs in
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Algorithm 1 MCMC algorithm for approximately sampling from an M -DPP (Anari et al.,
2016)

Input: Training inputs X = {xi}Ni=1, number of points to choose, M , kernel k, T number
of steps of MCMC to run.
Returns: An (approximate) sample from a M -DPP with kernel matrix Kff formed by
evaluating k at X.
Initialize M columns by greedily selecting columns to maximize the determinant of the
resulting submatrix. Call this set of indices of these columns Z0.
for τ ≤ T do

Sample i uniformly from Zτ and j uniformly from X \Zτ . Define Z ′ = Zτ \ {i} ∪ {j},
Compute pi→j := 1

2 min{1, det(KZ′)/det(KZτ )}
With probability pi→j , Zτ+1 = Z ′ otherwise, Zτ+1 = Zτ

end for
Return: ZT

polynomial time and yields exact samples from an M -DPP. Unfortunately, this algorithm
involves computing an eigendecomposition of the N × N kernel matrix (Kff in our case),
which is computationally prohibitive.

Recently, Dereziński et al. (2019) gave an algorithm for obtaining an exact sample
from an M -DPP in time that is polynomial in M and nearly-linear in N . However, the
polynomial in M is high. We instead consider an approximate algorithm and therefore
derive the following simple corollary of Lemma 7.

Corollary 8 Let ρ denote an M -DPP with kernel matrix L, satisfying Li,i ≤ v. Let ρ′

denote a measure on subsets of columns of L with cardinality M such that TV(ρ, ρ′) ≤ ε for
some ε > 0, where TV(ρ, ρ′) := 1

2

∑
|Z|=M ρ(Z)− ρ′(Z). Then

Eρ′ [tr(L− LZ)] ≤ 2Nvε+ (M + 1)
N∑

m=M+1

ηm,

where ηm is the mth largest eigenvalue of L.

Proof

Eρ′ [tr(L− LZ)] =
∑
|Z|=M

tr(L− LZ)(ρ′(Z) + ρ(Z)− ρ(Z))

= Eρ[tr(L− LZ)] +
∑
|Z|=M

tr(L− LZ)(ρ′(Z)− ρ(Z))

≤ Eρ[tr(L− LZ)] + 2TV(ρ, ρ′) max
Z:|Z|=M

(tr(L− LZ)).

The corollary is completed by noting that for all Z, tr(L− LZ) ≤ tr(L) ≤ Nv.

Corollary 8 shows that sufficiently accurate approximate sampling from an M -DPP only
has a small effect on the quality of the resulting Qff. High quality approximate samples can
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be drawn using a simple Markov Chain algorithm described in Anari et al. (2016), given as
Algorithm 1. This MCMC algorithm is well-studied in the context of M -DPPs and their
generalizations, and is known to be rapidly mixing (Anari et al., 2016; Hermon and Salez,
2019).

Lemma 9 (Hermon and Salez, 2019, Corollary 1) Let ρ be an M -DPP with N ×N
kernel matrix L. Fix ε ∈ (0, 1). Then Algorithm 1 produces a sample from a distribution ρ′

satisfying
TV(ρ, ρ′) ≤ ε

in not more than T (ε) = 2MN
(

log log
(

1
ρ(Z0)

)
+ log 2

ε2

)
iterations, where Z0 is the subset

of columns at which the Markov chain is initialized.

Since the determinant of a matrix is equal to the product of the determinant of a principal
submatrix times the determinant of the Schur complement of this submatrix, the greedy
initialization used in Algorithm 1 is equivalent to starting with U = ∅ and iteratively adding
argmaxx∈X k(x, x) − kf(x)uK−1

uu kuf(x) to U . This can be performed in time O(NM2), for
example by computing the pivot rules of a rank-M incomplete Cholesky decomposition of
Kff (Chen et al., 2018, Algorithm 1).

The per iteration cost of Algorithm 1 is dominated by computing the acceptance ratio,
which can be performed in O(M2), by iteratively updating a Cholesky or QR factorization
of the matrix associated to the current set of columns. This makes the total cost of obtain-
ing an ε-approximate sample O

(
NM3 log log(1/ρ(Zgreedy)) +NM3 log 2/ε2

)
, where Zgreedy

denotes the set of columns selected by greedily maximizing the determinant of the subma-
trix. Moreover, the subset selected by the algorithm is known to have a probability at least
1/(M !)2 of the maximum probability subset (Çivril and Magdon-Ismail, 2009; Anari et al.,
2016). By using the fact that the the maximum probability subset is more probable than
the uniformly distributed probability, we obtain

ρ(Zgreedy) ≥
(
M !2

(
N

M

))−1

≥ (MN)−M ,

giving an overall complexity of not more than O
(
NM3(log logN + logM + log 1/ε2)

)
. This

gives us a method for initializing inducing points conditioned on input locations, such that
we can relate E[tr(Kff −Qff ) |X = X] to tr(Kff −KM ).

We now take a brief detour to consider a different approach to initializing inducing
inputs before completing the proof of a priori bounds on the KL-divergence.

4.2.3 Ridge Leverage Scores

While using anM -DPP to select inducing inputs allows us to bound E[tr(Kff −Qff ) |X = X],
this method has a significant drawback as opposed to other methods of initialization: the
computational cost of running the MCMC algorithm to obtain approximate samples domi-
nates the cost of sparse inference. Ridge leverage score (RLS) sampling offers an alternative
that runs in O(NM2), while retaining strong theoretical guarantees on the quality of the
resulting approximation. In this section, we give a brief discussion of ridge leverage scores
as well an algorithm of Musco and Musco (2017) that allows for efficient approximations to
ridge leverage scores.
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The ω-ridge leverage score of a point xn ∈ X of a Gaussian process regressor, which we
denote by `ω(xn) is defined as 1/ω times the posterior variance at xn of the process with
noise variance ω, i.e.

`ω(xn) =
1

ω

(
k(xn, xn)− kT

nf(Kff + ωI)−1knf

)
,

where kT
nf = [k(x1, xn), k(x2, xn), . . . , k(xn, xn)]. RLS sampling uses these values as an

importance distribution for selecting which points to include in sparse kernel methods.
Intuitively, points at which there is high posterior uncertainty must be ‘far’ from other
points, and therefore informative.

Computing the ridge leverage scores exactly is too computationally expensive, as it
involves inverting the kernel matrix. However, practical approximate versions of leverage
sampling algorithms that retain strong theoretical guarantees have been developed.

Ridge leverage based sampling algorithms select a subset of training data to use as
inducing points. Each point is sampled independently into the subset with probability
proportional to its leverage score. Approximate versions of this algorithm generally rely on
overestimating the ridge leverage scores, which lead to equally strong accuracy guarantees
compared to using the exact ridge leverage scores, at the cost of sampling more points in
the approximation.

We consider the application of Algorithm 3 in Musco and Musco (2017) to the problem
of selecting inducing inputs for sparse variational inference in GP models. This algorithm
comes with the following bounds on the quality of the resulting Nyström approximation.

Lemma 10 (Musco and Musco, 2017, Theorem 14, Appendix D) Given X ∈ XN
and a kernel k, let Kff denote the N ×N covariance matrix associated to X and k. Fix δ ∈
(0, 1

32) and S ∈ N. There exists a universal constant c and algorithm with run time O(NM2)
and memory complexity O(NM) that with probability 1 − 3δ returns M ≤ cS log(S/δ)
columns of Kff such that the resulting Nyström approximation, Qff , satisfies

‖Kff −Qff‖op ≤
1

S

N∑
m=S+1

λ̃m.

While in Section 4.2.2 M was fixed and the quality of the resulting approximation was
random, in the algorithm discussed above M is additionally random.

An alternative approach to sampling using ridge leverage scores specifies a desired level
of accuracy of the resulting approximation, and the number of points selected is chosen
to obtain this approximation quality with fixed probability. This has the advantage of
not requiring the user to manually select the number of inducing points, but may lead to
a number of inducing points being used that exceeds a practical computational budget.
We discuss the application of this approach to variational Gaussian process regression in
Appendix G.

4.3 A-Priori Bounds on the KL-divergence

In the previous sections, the results on the quality of approximation depended on the
eigenvalues of Kff. As these eigenvalues depend on the covariates X, and we would like to
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make statements that apply to a wide-range of data sets, we assume X is a realization of a
random variable X, and make assumptions about the distribution of X.

If each x ∈ X is i.i.d. distributed, according to some measure with continuous density
p(x), in the limit as the amount of data tends to infinity, the matrix 1

NKff behaves like the
operator K (Koltchinskii and Giné, 2000) defined with respect to this p. For finite sample
sizes, the large eigenvalues of 1

NKff tend to overestimate the corresponding eigenvalues of
K and the small eigenvalues of 1

NKff tend to underestimate the small eigenvalues of K. We
make this precise through a minor generalization of a lemma of Shawe-Taylor et al. (2005).

Lemma 11 Suppose that N covariates are distributed in RD such that the marginal dis-
tribution, µxn, of each covariate, xn has a continuous density pn(x), and there exists a
distribution with continuous density q(x) satisfying pn(x) < cnq(x) for some cn > 0 for
all n. Let λ̃m denote the mth largest eigenvalue of the random matrix Kff formed by a
continuous, bounded kernel and these covariates. Let λm denote the mth largest eigenvalue
of the integral operator corresponding to the distribution with density q, Kq. Then, for any
M ≥ 1

E

[
1

N

N∑
m=M+1

λ̃m

]
≤ c̄

∞∑
m=M+1

λm,

where c̄ = 1
N

∑N
n=1 cn.

Proof For X taking values in (RD)N , and any rank-M matrix SPSD Φ ≺ Kff , we have

1

N

N∑
m=M+1

λ̃m =
1

N
tr(Kff −KM ) ≤ 1

N
tr(Kff −Φ),

with KM defined as in Section 4.2.1. The inequality follows form the optimality of KM as
a rank-M approximation to Kff in the Schatten-1 norm (sum of absolute value of singular
values).

As k is a continuous bounded kernel we can apply Mercer’s theorem to represent k(x, x′)
with respect to the eigenfunctions of the operatorKq giving [Kff ]i,j =

∑∞
m=1 λmφm(xi)φm(xj),

and Eq
[
φ(xn)2

]
= 1.

Consider the rank-M approximation to Kff given by truncating this Mercer expansion,
[Φ]i,j =

∑M
m=1 λmφm(xi)φm(xj). Then [Kff −Φ]i,j =

∑∞
m=M+1 λmφm(xi)φm(xj), so Kff −

Φ � 0.
For any covariates {xn}Nn=1 satisfying the conditions of the lemma,

1

N

N∑
m=M+1

λ̃m ≤
1

N
tr(Kff −Φ) =

1

N

N∑
n=1

∞∑
m=M+1

λmφm(xn)2.

Taking expectations on both sides with respect to the covariate distribution,

E

[
1

N

N∑
m=M+1

λ̃m

]
≤ 1

N

N∑
n=1

∞∑
m=M+1

λm

∫
φm(x)2pn(x) dx

≤ 1

N

N∑
n=1

cn

∞∑
m=M+1

λm

∫
φm(x)2q(x) dx = c̄

∞∑
m=M+1

λm ,
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The interchanging of integral and sum is justified by Fubini’s theorem as each φm is square
integrable, each eigenvalue is non-negative, and the sum converges by Mercer’s theorem.
We used the non-negativity of φm(x)2 in the second inequality to bound the expectation of
φm(x)2 under pn in terms of its expectation under q.

Corollary 12 Suppose the covariate distribution has identically distributed marginals, each
with density p(x), then

E

[
1

N

N∑
m=M+1

λ̃m

]
≤

∞∑
m=M+1

λm,

where λm is the mth largest eigenvalue of the operator associated to the kernel and the
distribution with continuous density p(x).

This corollary follows from Lemma 11 by taking q = p and cn = 1 for all n. For simplicity, we
will state our main results using the assumptions of this corollary, though the generalization
to cases with non-identical marginals satisfying the conditions of Lemma 11 is immediate.
We have now accumulated the necessary preliminaries to prove our main theorems.

4.3.1 Bounds on the KL-divergence for M -DPP Sampling

Theorem 13 Suppose N training inputs are drawn according to a distribution on RD with
identical marginal distributions, each with density p(x). Let k be a continuous kernel such
that k(x, x) < v for all x ∈ RD. Suppose y is distributed such that E

[
‖y‖22

∣∣X] ≤ RN
almost surely for some R ≥ 0. Sample M inducing points from the training data according
to an ε-approximation to a M -DPP with kernel matrix Kff. Then,

E[KL[Q||P ]] ≤ 1

2

(
1 +

RN

σ2

)
(M + 1)N

∑∞
m=M+1 λm + 2Nvε

σ2
, (17)

where the expectation is taken over the covariates, the mechanism for initializing inducing
points and the observations.

Proof of Theorem 13 We use Lemma 3, Corollary 8 and take expectations with respect to
Z, noting that Z|X is independent of y|X so that E[tr(Kff −Qff ) |X] = E[tr(Kff −Qff ) |y,X],

E[KL[Q||P ] |y,X] ≤ N

2σ2

(
1 +
‖y‖22
σ2

)(
M + 1

N

N∑
m=M+1

λ̃m + 2vε

)
. (18)

Now using the assumption that E
[
‖y‖22

∣∣X] ≤ RN almost surely, and taking expectation
over y,

E[KL[Q||P ] |X] ≤ N

2σ2

(
1 +

RN

σ2

)(
M + 1

N

N∑
m=M+1

λ̃m + 2vε

)
. (19)
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Finally, taking expectation with respect to the covariate distribution over the covariate
distribution and applying Lemma 11,

E[KL[Q||P ]] ≤ 1

2

(
1 +

RN

σ2

)(
N(M + 1)

∑∞
m=M+1 λm + 2Nvε

σ2

)
. (20)

Theorem 14 With the same assumptions on the covariates and inducing point distribu-
tions as in Theorem 13, but with the assumption that y|X is conditionally Gaussian dis-
tributed with mean zero and covariance matrix Kff + σ2I,

E[KL[Q||P ]] ≤ (M + 1)N
∑∞

m=M+1 λm + 2Nvε

σ2
(21)

where the expectation is taken over the covariate distribution, the observation distribution
and the initialization mechanism.

The proof of Theorem 14 is nearly identical to the proof of Theorem 13, applying Lemma 4
instead of Lemma 3 in the first line.

In certain instances, it may be desirable to have a bound that holds with fixed probability
instead of in expectation. As KL[Q||P ] ≥ 0, such a bound can be derived through applying
Markov’s inequality to Theorem 13 or Theorem 14 leading to the following corollaries:

Corollary 15 Under the assumptions of Theorem 13, with probability at least 1− δ,

KL[Q||P ] ≤ 1

2

(
1 +

RN

σ2

)
(M + 1)N

∑∞
m=M+1 λm + 2Nvε

δσ2
.

Corollary 16 Under the assumptions of Theorem 14, with probability at least 1− δ,

KL[Q||P ] ≤ (M + 1)N
∑∞

m=M+1 λm + 2Nvε

δσ2
.

4.3.2 Bounds for Ridge Leverage Score Sampling

We now state and derive statements similar to Corollaries 15 and 16 for a ridge leverage
score initialization utilizing Musco and Musco (2017, Algorithm 3). In order to this we us
that for any SPSD A, tr(A) ≤ N‖A‖op, so that Lemma 3 implies

KL[Q||P ] ≤ ‖Kff −Qff‖op

2σ2

(
N +

‖y‖22
σ2

)
, (22)

and Lemma 4 implies,

E[KL[Q||P ] |Z,X] ≤ N ‖Kff −Qff‖op

σ2
. (23)

Combining Lemma 10 and Corollary 12 and using Markov’s inequality twice with Eq. (22)
or Eq. (23) and a union bound respectively leads to the following bounds on the performance
of sparse inference using ridge leverage scores:
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Kernel Covariate Distribution M, Theorem 13 M, Theorem 17

SE-Kernel Compact support O((logN)D) O((logN)D log logN)
SE-Kernel Gaussian O((logN)D) O((logN)D log logN)

Matérn ν Compact support O(N
2D

2ν−D ) O(N
2D

2ν+D logN)

Table 1: The number of features needed for upper bounds to converge inD−dimensions. We
assume the compactly supported distributions have bounded density functions.5

Theorem 17 Take the same assumptions on X and y|X as in Theorem 13. Fix δ ∈
(0, 1/32) and S ∈ N. There exists a universal constant c such with probability 1 − 5δ, we
have M < cS log(S/δ) and

KL[Q||P ] ≤ 1

2

(
N +

RN

σ2

)
N
∑∞

m=S+1 λm

Sδ2σ2

when inducing points are initialized using Musco and Musco (2017, Algorithm 3).

Theorem 18 Take the same assumptions on X and y|X as in Theorem 14. Fix δ ∈
(0, 1/32) and S ∈ N. There exists a universal constant c such with probability 1 − 5δ, we
have M < cS log(S/δ) and

KL[Q||P ] ≤ N2
∑∞

m=S+1 λm

Sδ2σ2

when inducing points are initialized using Musco and Musco (2017, Algorithm 3).

4.3.3 Are these bounds useful?

Having established probabilistic upper bounds on the KL-divergence resulting from sparse
approximation, a simple question is whether these bounds offer any insight into the efficacy
of sparse inference. If in order for the upper bounds to be small, we need to take M = N ,
then they would not be useful, as it is already known that by taking Z = X, exact inference
is recovered. In the next section, we discuss bounds on the eigenvalues of K for common
kernels and input distribution. These bounds show that for many inference problems, the
upper bounds in Theorems 13, 14, 17 and 18 imply that the KL-divergence can be made
small with M � N inducing points.

5. Bounds for Specific Kernels and Covariate Distributions

In this section, we consider specific covariate distributions and commonly used kernels,
and investigate the implications of the upper bounds derived in Section 4. These results
are summarized in Table 1. We begin with the case of the popular squared exponential
kernel and Gaussian covariates in one-dimension. This kernel and covariate distribution

5. Burt et al. (2019) stated bounds for a product of one-dimensional Matérn kernels, which differs from the
commonly used multivariate Matérn kernel.

24



Convergence of Sparse VI in GP Regression

10 15 20 25 30 35 40 45

Number of Inducing points

0

2

4

6

8

10

K
L

-D
iv

er
g
en

ce

KL-Divergence U2 - ELBO Theorem 1 Theorem 2

Figure 3: A comparison of the actual KL-divergence achieved, the bound given by Lemma 2
and the bounds derived in Corollaries 15 and 16 squared exponential kernel. For
the actual KL-divegence and the bound given by Lemma 2, the dotted line shows
the median of 20 independent trials and the shaded region shows the 20%− 80%
regions, while for the bounds, the dotted line represents δ = .5 and the shaded
region δ ∈ [.2, .8].

are one of the few instances in which the eigenvalues of K have a simple analytic form.
In Section 5.1.1, we consider the analogous multi-dimensional problem. In Section 5.2 we
discuss implications for stationary kernels with compactly supported inputs, including the
well-studied Matérn kernels.

5.1 Squared Exponential Kernel and Gaussian Covariate Distribution

In the case of the squared exponential kernel, with lengthscale parameter ` and variance v,
that is

kSE(x, x′) = v exp

(
−(x− x′)2

2`2

)
and one-dimensional covariates distributed according to N (0, β2), the eigenvalues of K are
(Zhu et al., 1997)

λm =

√
2a

A
Bm−1 , (24)

where a = (4β2)−1, b = (2`2)−1, A = a + b +
√
a2 + 4ab and B = b/A. Note that B < 1

for any `2, β2 > 0, so the eigenvalues of this operator decay geometrically. However, the
exact value of B depends on the lengthscale of the kernel and the variance of the covariate
distribution. Short lengthscales and high standard deviations lead to values of B close
to 1, which means that the eigenvalues decay more slowly. From a practical perspective,
it is important to keep this in mind, as while the particular rates we obtain on how M

25



Burt, Rasmussen, van der Wilk

should grow as a function of N do not depend on the model hyperparameters, the implicit
constants do.

Corollary 19 Let k be a squared exponential kernel. Suppose that N real-valued (one-
dimensional) covariates are observed, with identical Gaussian marginal distributions. Sup-
pose the conditions of Theorem 13 are satisfied for some R > 0. Fix any γ ∈ (0, 1]. Then
there exists an M = O(log(N3/γ)) and an ε = Θ(γ/N2) such if inducing points are dis-
tributed according to an ε-approximate M -DPP with kernel matrix Kff,

E[KL[Q||P ]] ≤ γ.

Similarly, for any δ ∈ (0, 1/32) using the ridge leverage algorithm of Musco and Musco

(2017) and choosing S appropriately, with probability 1−5δ, M = O
(

log N2

δ2γ
log log(N2/δ2γ)

δ

)
and

KL[Q||P ] ≤ γ.
The implicit constants depend on the kernel hyperparameters, the likelihood variance, the
variance of the covariate distribution and R.

Remark 20 If we consider γ and δ as fixed constants (independent of N), this implies that
if inducing points are placed using an approximate M -DPP we can choose M = O(log(N))
inducing points leading to a computational cost of O(N(logN)4) while for approximate ridge
leverage scores sampling O(logN log logN) inducing points suffice leading to a cost at most
O(N(logN)2(log logN)2).

The proof (Appendix D.1) consists of applying the geometric series formula to evaluate
the sum of eigenvalues and choosing M, ε and S appropriately. All dependencies of the
implicit constants on hyperparameters can be made explicit. Figure 3 illustrates the KL-
divergence, the a posteriori bound given by U2 −ELBO and the bounds from Theorems 13
and 14 in the case of a SE kernel and synthetic 1D distributed covariates.

Corollary 19 is illustrated in Fig. 4, in which we increase N and increase M logarithmi-
cally as a function of N in such a way that KL[Q||P ] can be bounded above by a decreasing
function in N .

5.1.1 The Multivariate Case

The generalization of Corollary 19 to the case of multi-dimensional input distributions is
relatively straightforward. The multi-dimensional version of the squared exponential kernel
can be written as a product of one dimensional kernels, i.e.

kSEARD(x, x′) = v exp

(
−

D∑
d=1

(xd − x′d)2

`2d

)
= v

D∏
d=1

exp

(
−(xd − x′d)2

`2d

)
,

where `d > 0 for all d.

For any kernel that can be expressed as a product of one-dimensional kernels, and
for any covariate distribution that is a product of one-dimensional covariate distributions,
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Figure 4: To illustrate Corollary 19, we incrementally increase the size of the data set, and
set the number of inducing points to grow as the log of the data set size. The top
plot shows the KL-divergence (blue) for each data set as N increases, plotted on
a log-log scale. The bound in Theorem 14 (in green) tends to 0. We also compute
the a posteriori upper bound, Lemma 2 (yellow). The bottom plot shows the
number of inducing points, plotted against the number N with N on a log-scale.

the eigenvalues of the multi-dimensional covariance operator is the product of the one-
dimensional analogues. When obtaining rates of convergence, we lose no generality in
assuming that the kernel is isotropic as is the covariate distribution. Otherwise, consider
the direction with the shortest lengthscale, and the covariate distribution with the largest
standard deviation and the eigenvalues of this operator are larger than a constant multiple
of the corresponding eigenvalues of the non-isotropic operator.

In the isotropic case, each eigenvalue is of the form,

λm = (2a/A)D/2Bm′ ,

for some integer m′ with a,A and B defined as in the one-dimensional case. Note that m
and m′ are no longer equal. The number of times each eigenvalue with m′ in the exponent
is repeated is equal to the number of ways to write m′ as a sum of D non-negative integers.
By counting the multiplicity of each eigenvalue, Seeger et al. (2008) arrived at the bound

λm+D−1 ≤ (2a/A)D/2Bm1/D
.

In order to prove a multi-dimensional analogue of Corollary 19 we need an upper bound on∑∞
m=M+1 λm. This can be derived with following an argument made by Seeger et al. (2008,

Appendix II).

Proposition 21 For a SE-kernel and Gaussian distributed covariates in RD, for M ≥
1
αD

D + D − 1,
∑∞

m=M+1 λm = O(M exp(−αM1/D)), where α = − logB > 0 and the
implicit constant depends on the dimension of the covariates, the kernel parameters and the
covariance matrix of the covariate distribution.
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The proof of Proposition 21 is in Appendix D.1.

Corollary 22 Let k be a SE-ARD kernel in D-dimensions. Suppose that N D-dimensional
covariates are observed, so that each covariate has an identical multivariate Gaussian dis-
tribution, and that the distribution of training outputs satisfies E

[
‖y‖2

∣∣X] ≤ RN . Fix any
γ ∈ (0, 1]. Then there exists an M = O((logN/γ)D) and an ε = O(N2/γ) such if inducing
inputs are distributed according to an ε-approximate M -DPP with kernel matrix Kff,

E[KL[Q||P ]] ≤ γ.

The implicit constant depends on the kernel hyperparameters, the variance matrix of the
covariate distribution, D and R. With the same assumptions but applying the RLS algorithm
of Musco and Musco (2017) to selecting inducing inputs, for any δ ∈ (0, 1/32) there exists

a choice of S such that with probability 1− 5δ, M = O
((

log N2

δγ

)D
(log log N2

δγ + log(1/δ)

)
and

KL[Q||P ] ≤ γ.

The proof follows from Proposition 21 and Theorem 13 or Theorem 17, by choosing
parameters appropriately.

Remark 23 If we allow the implicit constant to depend on γ and δ, this implies that
for inducing ploints distributed accoding to an approximate M -DPP we can choose M =
O((logN)D) inducing points leading to a computational cost of O(N(logN)3D+1) while for
approximate ridge leverage scores sampling O((logN)D log logN) inducing points suffice
leading to a O(N(logN)2D(log logN)2) computational cost.

In order for the KL-divergence to be less than a fixed constant, the exponential scaling
of the number of inducing points in the dimensions of the covariates is inevitable, as we
will show in Section 6. However, practically the situation may not be quite so dire. First,
many practioners use a SE-ARD kernel. If the data is essentially constant over many
dimensions, then when training with empirical Bayes, the lengthscales of these dimensions
tends to become large, effectively reducing the dimensionality of the inference problem.
Additionally, in the case when covariates fall on a smooth, low-dimensional manifold, the
decay of the eigenvalues only depends on the dimensionality and smoothness properties of
this manifold, see Altschuler et al. (2019, Theorem 4). In addition, for a given problem,
the dimensionality D is fixed, meaning that the dependence of the number of inducing
points M depends polylogarithmically on N . This growth is slower than any polynomial,
i.e. (logN)D = o(N ε) for ε > 0.

We also note that Corollary 22 can easily be adapted using Lemma 11 to show that if all
of the xn are drawn from any compactly supported distributions with continuous densities
that are all bounded by some universal constant, the same asymptotic bound on the number
of inducing points applies. This follows from noting that under these assumptions, pn(x),
satisfies pn(x) < cq(x) where q(x) is a Gaussian density for some c > 0, so we can apply
Lemma 11 to bound the expectation of the sum of the matrix eigenvalues associated to pn
in terms of the eigenvalues associated to q.
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5.2 Compactly Supported Inputs and Stationary Kernels

For most kernels and covariate distributions, solutions to the eigenfunction problem, Kφ =
λφ cannot be found in closed form. In the case of stationary kernels defined on RD, that
is kernels satisfying k(x, x′) = κ(x− x′) for some κ : RD → R, the asymptotic properties of
the eigenvalues are often understood (Widom, 1963, 1964).

Stationary, continuous kernels can be characterized through Bochner’s theorem, which
states that any such kernel is the Fourier transform of a positive measure, i.e.

κ(x− x′) =

∫
RD

s(ω) exp(iω · (x− x′))dω.

We will refer to s(ω) as the spectral density of k.6 The decay of the spectral density conveys
information about how smooth the kernel function is.

Widom’s theorem (Widom, 1963) relates the decay of the eigenvalues of K to the decay
of s. Widom’s theorem applies to input distributions with compact support and stationary
kernels with spectral density satisfying several regularit conditions (stated in Appendix D).
Seeger et al. (2008) give a corollary of Widom’s theorem, which is sufficient in many instances
to obtain bounds on the number of inducing points needed for Theorems 13 and 14 to
converge.

Lemma 24 (Seeger et al., 2008, Theorem 2) Let k be an isotropic kernel (i.e. κ(α) =
κ(α′) if ‖α‖ = ‖α′‖). Suppose k satisfies the criteria of Widom’s theorem, the covariate
distribution has density zero outside a ball of radius T around the origin, and is bounded
above by τ , then

λm ≤ τ(2π)Ds

(
2Γ(D/2 + 1)2/D

T
m1/D

)
(1 + o(1)).

5.2.1 Matérn kernels and compactly supported input distribution

Matérn kernels are widely applied to problems where the data generating process is believed
to lead to non-smooth functions, and are known to satisfy the conditions of Widom’s the-
orem (Seeger et al., 2008). These kernels are defined as (Rasmussen and Williams, 2006),

kMat(x, x
′) =

21−ν

Γ(ν)

(‖x− x′‖2
`

)ν
Kν

(‖x− x′‖2
`

)
, (25)

where Kν is a modified Bessel function. The spectral density of the Matérn kernel is

s(ω) =
`DΓ(ν +D/2)

πD/2Γ(ν)

(
1 + (`ω)2

)−(ν+D
2

)

which is proportional to a Student’s t-distribution with 2ν + D degrees of freedom. This
spectral density only decays polynomially, with the degree of the polynomial depending on
ν and D. Here ` > 0 is the lengthscale and ν > 0 is a ‘smoothness’ parameter often chosen
as ν ∈ {1

2 ,
3
2 ,

5
2}. The posterior mean is bνc-times differentiable, which relates to the slower

decay of the spectral density.

6. We assume κ(x− x′) decays sufficiently rapidly so that such a continuous spectral density exists.
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Lemma 24 tells us that for compactly supported covariates with bounded density and
the Matérn kernel with smoothness paramater ν

λm = O(m
−2ν−D
D ).

It follows that
∑D

m=M+1 λm = O(M
−2ν
D ). From this, we can derive a result of the same

form as Corollary 22 for Matérn kernels and compactly supported input distributions.

Corollary 25 Suppose the conditions of Theorem 13 on X and y are satisfied for some
R > 0. Let k be a Matérn kernel with smoothness parameter ν. Suppose that N covariates
are observed, each with an identical distribution with bounded density and compact support
on RD. Fix any γ ∈ (0, 1]. Then for ν > D/2 if inducing points are initialized using an

ε-approximate M -DPP with and ε = O(N2/γ) there exists an M = O(N
2D

2ν−D γ
D

2ν−D ) such
that

E[KL[Q||P ]] ≤ γ.
Under the same assumptions if inducing points are initialized using the RLS algorithm of

Musco and Musco (2017) with δ ∈ (0, 1/32) there exists an S = O
(
N

2D
2ν+D (γδ2)

−D
2ν+D

)
such

that with probability at least 1− 5δ,

KL[Q||P ] ≤ γ,

and M ≤ S log S
δ .

Remark 26 If we consider γ and δ as fixed constants (independent of N), this implies that

for an initialization with M -DPP we can choose M = O(N
2D

2ν−D ) inducing points leading to

a computational cost of O(N
2ν+5D
2ν−D log(N)) while for approximate ridge leverage scores sam-

pling O(N
2D

2ν+D logN) inducing points suffice leading to a cost at most O(N
2ν+5D
2ν+D (logN)2).

The first part corollary follows from Theorem 13, noting that we need to choose M such
that

CN2M

∞∑
m=M+1

λm ≤ C ′N2M
D−2ν
D ≤ γδ/2

for some constants C,C ′. The second part follows from similar considerations applied to
Theorem 17.

These bounds on M are vacuous (i.e. are no smaller than M = O(N)) for Matérn
kernels in high dimensional spaces or with low smoothness parameters. Additionally, the
cost of sampling the M -DPP using Algorithm 1 makes this inference scheme less expensive
than exact GP inference only when ν > 2D. If we instead make the stronger assumptions

required by Theorem 14, we can choose M = O(N
D

2ν−D ), which implies a computational
complexity less than exact GP regression if ν > 5

4D.
The bounds for the RLS initialization are generally sharper, and are non-vacuous for all

ν > D/2 with the weaker assumptions on y. Additionally, the computational complexity
of choosing inducing points using the RLS algorithm is the same as the cost of inference
up to logarithmic factors, so that for ν > D/2 the cost of sparse inference with the RLS
initialization is (asymptotically) smaller than the cubic cost of exact GP regression.
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6. Lower Bounds on the Number of Inducing Points Needed

In Sections 4 and 5, we showed that for many problems the number of inducing points can
grow sub-linearly with the number of data points, while maintaining a small KL-divergence
between the approximate and exact posteriors. In this section we consider the inverse
question, i.e. how many inducing points are necessary to avoid having the KL-divergence
grow as the amount of data increases? In this section, we prove a-priori lower bounds on
the KL-divergence under similar assumptions to those used in proving the upper bounds in
Section 4.

Naively, it appears that the lower bound in Lemma 4 gives us a starting place for a
lower bound on the KL-divergence. From this bound,

E[KL[Q||P ] |Z,X] ≥ t

2σ2
. (26)

While lower bounding this quantity can be done using the approach taken in this section,
it is not the most interesting quantity to study, as we average over y conditioned on X and
Z. This would not give a valid lower bound if the locations of the inducing points depend
on y, as illustrated in Fig. 1. This approach would establish a lower bound for initialization
schemes considered in the previous sections, as well as any initialization scheme that does
not take the observed y into account, but not the common practice of performing gradient
ascent on the ELBO with respect to inducing inputs.

In this section, we establish a lower bound on the number of inducing variables needed for
the KL-divergence not to become large, which is valid regardless of the method for selecting
inducing variables or the distribution of y. These bounds assume that the covariates are
independent and identically distributed (in contrast to the upper bounds, which do not
require independence and require a slightly weaker condition than identical marginals).
The independence assumption is necessary in order to lower bound the eigenvalues of the
covariance matrix. For example, if all of the covariates were identically distributed and
equal, the covariance matrix would be rank-1 and so a single inducing point could be used
regardless of the size of the data set.

The proof of the lower bounds proceeds in two parts:

1. First, we derive a lower bound on KL[Q||P ] that holds for any y and Z, but depends
on the eigenvalues of Kff.

2. Second, we use a result on the concentration of eigenvalues of the kernel matrix to
those of the corresponding operator due to Braun (2006) to derive a lower bound that
holds with fixed probability under the assumption that the covariates are independent
and identically distributed.

In the case of SE-kernel and Gaussian covariates, we establish a lower bound with the
same dependence on N as our upper bounds, that is we need M = Ω((logN)D). In the
case of Matérn kernels with uniform covariates and ν > 1, we establish a lower bound
that increases as a power of N . However, there is a large gap between our upper and lower
bounds for Matérn kernels, indicating room for improvement. These results are summarized
in Table 2. While our results are stated in terms of inducing points, they hold for more
general inducing variables.
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Kernel Input Distribution M

SE-Kernel Gaussian Ω((logN)D)

Matérn ν Uniform Ω
(
N

2νD
(2ν+5D)(2ν+D)

−ε
)

Table 2: The lower bounds we establish on the number of features needed so that the KL-
divergence does not increase as a function of N . Here ε is a positive constant
that can be chosen arbitrarily close to 0. While the bound for the the SE-kernel
matches our upper bounds up to terms that are constant in N , we expect the lower
bound for the Matérn kernel can be raised significantly.

6.1 A Lower Bound

In this section, we derive a lower bound on the KL-divergence that holds for any y and Z
and depends on X.

Lemma 27 Given a kernel k, likelihood model with variance σ2 and random covariates X.
Then,

min
Z∈XM

min
y∈RN

KL[Q||P ] ≥ 1

2

N∑
m=M+1

λ̃m
σ2
− log

(
1 +

λ̃m
σ2

)
where λ̃m denotes the mth largest eigenvalue of the matrix Kff determined by the covariates
and kernel.

The proof (Appendix E) follows from noting that for any X, y, Z we have KL[Q||P ] =
log p(y) − L(y, Z) ≥ log p(0) − L(0, Z), where we have defined L(y, Z) to be the evidence
bound resulting from the triple X, y, Z (and suppressed dependence on X). The bound
follows from writing both the trace and log determinant in terms of eigenvalues and using
that Kff � Qff , so that the mth largest eigenvalue of Kff is greater than the mth largest
eigenvalue of Qff for all 1 ≤ m ≤ N .

In order to establish lower bounds on the number of inducing variables needed to ensure
the KL-divergence does not grow as a function of N , it suffices to analyze the behavior of
the lower bound in Lemma 27 for random covariates as a function of both M and N .

6.2 Structure of the Argument

In order to derive a lower bound on the KL-divergence Lemma 27, we can consider just
the largest term in the sum appearing in Lemma 27, as all the terms are non-negative. For

a > 3, log(1 + a) ≤ a/2. Therefore, if λ̃M+1/σ
2 > 3, we have KL[Q||P ] ≥ λ̃M+1

4σ2 .

Under the supposition that λ̃M+1/σ
2 > 3, we can apply the triangle inequality to

Lemma 27 to give,

KL[Q||P ] ≥ N(λM+1 − |λM+1 − 1
N λ̃M+1|)

4σ2

Therefore, for any M = M(N) such that:

32



Convergence of Sparse VI in GP Regression

1. We can show a relative error bound on the approximation of matrix eigenvalues with

operator eigenvalues of the form
|λM+1− 1

N
λ̃M+1|

λM+1
< 1− γN for some γN ∈ (0, 1),

2. NγNλM+1 tends to infinity as N tends to infinity,

it must be the case that the KL-divergence tends to infinity as a function of N (at a rate
Ω(NγNλM+1)).

6.3 Concentration of Eigenvalues

In order to complete the argument in the previous section, we need a more fine-grained
understanding of the behavior of eigenvalues of Kff than given in Lemma 11. For this, we
rely on the following result:

Lemma 28 (Braun, 2006, Theorem 4) Let k be a continuous kernel with k(x, x) ≤ v
for all x ∈ RD. Fix δ ∈ (0, 1). Suppose x1, · · · ,xN are realizations of i.i.d. random variables
sampled according to some measure on RD with density p(x). Then for all m and any
1 ≤ r ≤ N , with probability at least 1− δ,

|λm −
1

N
λ̃m| ≤ λmr

√
r(r + 1)v

λrNδ
+

∞∑
s=r

λs +

√
2v
∑∞

s=r+1 λs

Nδ
(27)

= O

λmr2λ−1/2
r N−1/2δ−1/2 +

∞∑
s=r

λs +

√∑∞
s=r+1 λs

Nδ

.
where λm is the mth eigenvalue of the integral operator K : (Kg)(x′) =

∫
g(x)k(x, x′)p(x)dx

and λ̃m is the mth eigenvalue of Kff .

For the remainder of this section, we consider specific cases of kernel and input distribu-
tions for which we know properties of the spectrum, and derive lower bounds on the number
of features needed so that the KL-divergence is not an increasing function of N .

6.4 Squared Exponential Kernel and Gaussian Covariates

We begin with the one-dimensional SE kernel and Gaussian covariates. The multivariate
case follows a similar, though more involved argument and will be discussed in Section 6.5.
Recall, if the covariates have variance β2, then for any r ∈ N

λr = v

√
2a

A
Br−1 and

∞∑
s=r

λs =
λr

1−B ,

where a = (4β2)−1, b = (2`2)−1, A = a+ b+
√
a2 + 4ab and B = b/A. For some η ∈ (0, 1),

choose r = 1 + dlogB(1 − B)
√
A/(2av2)N−ηe, so that

∑∞
s=r λr ≤ N−η and λr ≥ B(1 −

B)N−η. Hence Eq. (27) implies that for all m with probability at least 1− δ,

|λm − 1
N λ̃m|

λm
≤ r
√

r(r + 1)v

B(1−B)N1−ηδ
+ λ−1

m N−η +

√
2v

λ2
mN

1+ηδ
. (28)

33



Burt, Rasmussen, van der Wilk

For any fixed δ ∈ (0, 1) the first term on the right hand side tends to zero with N since
η < 1. For any M ≤ logB(

√
A/(2av2)N−η

√
δ),

|λM+1 − 1
N λ̃M+1|

λM+1
≤ r
√

r(r + 1)v

B(1−B)N1−ηδ
+

√
δ

2
+

√
v

2N1−η . (29)

The second term is less than 1/2 and the last term tends to 0 for large N . We conclude

that for any such M , the KL-divergence is bounded below by cN
NλM+1

8σ2 = Ω(N1−η), where
limN→∞ cN = 1.

Remark 29 For univariate Gaussian kernels, if we choose η = .01 in the above argument,

we get that for any M ≤ 1
log(1/B) log(N .01

√
2av2

δA ) = Ω(logN), the KL-divergence is Ω(N .99),

and will therefore be large as N increases. We therefore need M to grow faster than this to
avoid this if we want the KL-divergence to be small for large N .

6.5 The Isotropic SE-kernel and Multidimensional Gaussian Covariates

In order to obtain lower bounds in the multivariate case, we first obtain a lower bound on
the individual eigenvalues of the operator K.

Proposition 30 Suppose k is an isotropic SE-kernel in D dimensions with lengthscale `
and variance v. Suppose the training covariates are independently identically distributed
according to an isotropic Gaussian measure, µ, on RD with covariance matrix β2I. For any
r ∈ N, we have

λr ≥
(

2a

A

)D/2
BDr1/D

.

where λr denotes the rth largest eigenvalue of the operator K : L2(RD, µ) → L2(RD, µ) de-
fined by (Kg)(x′) =

∫
g(x)k(x, x′)p(x)dx with p(x) the density of the multivariate Gaussian

at x.

The proof (Appendix E) relies on a counting argument and standard bounds on binomial
coefficients. We can now combine Lemma 28 and Propositions 21 and 30 in order to bound
the multivariate SE-kernel with Gaussian inputs.

Proposition 31 Let k be an isotropic SE-kernel. Suppose N covariates are sampled in-
dependent and identically from an isotropic Gaussian density with variance β2 along each
dimension. Define M(N) to be any function of N such that limN→∞M(N)/(logN)D = 0;
i.e. M(N) = o((logN)D). Suppose inference is performed using any set of inducing inputs,
Z such that |Z| = M(N). Then for any y ∈ RN , for any ε > 0 and for any δ ∈ (0, 1), with
probability at least 1− δ, KL[Q||P ] = Ω(N1−ε).

Remark 32 To illustrate the meaning of this lower bound, consider the case when M(N) =
(logN)D−1. Then for N sufficiently large, we have KL[Q||P ] > N .99 implying for large N
the KL-divergence must be large. On the other hand from our upper bounds in Section 5, we
know that if we fix any positive constant γ there exists a constant C (that does not depend
on N) such that if inference is performed with M(N) = c(logN)D inducing inputs placed
according to an approximate M -DPP, the KL-divergence is less than γ in expectation.
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The proof follows from Lemma 27 by choosing r appropriately in Lemma 28 to bound
the empirical eigenvalues and using Propositions 21 and 30 to bound eigenvalues in the
appropriate directions to control the error term. Details are given in Appendix E.

6.6 Lower Bounds for Kernels with Polynomial Decay

As discussed in Section 5 some popular choices of kernels lead to eigenvalues that decay
polynomially instead of exponentially. For example, Widom (1963, Theorem 2.1) implies
that the eigenvalues of the operator associated to the Matérn kernel with smoothness pa-
rameter ν and covariates uniformly distributed in the unit cube has eigenvalues satisfy-

ing C1m
−2ν+D
D ≤ λm ≤ C2m

−2ν+D
D for some constant C1 and C2 independent of m i.e.

λm = Θ(m
−2ν+D
D ).7

Proposition 33 Let k be a continuous kernel, and µ a measure on RD with density p
such that the associated operator K has eigenvalue satisfying C1m

−η ≤ λm ≤ C2m
−η for

all m ≥ 1, some η > 1 and constants C1, C2 > 0. Suppose inference is performed using
any set of inducing inputs Z such that |Z| = M(N) with M(N) any function such that

limN→∞
M(N)
Nζ = c (i.e. M = O(N ζ)) for some c < ∞ and ζ ∈ (0, η−1

η(4+η)). Then for any

δ ∈ (0, 1) with probability at least 1− δ, KL[Q||P ] = Ω(N1−ηζ).

Proof We have λr = Θ(r−η) so
∑∞

s=r λs = Θ(r1−η). Choose r = Nγ for some γ ∈ (0, 1)
and M + 1 = N ζ . In this case the error term in Lemma 28 becomes:

|λM+1 − 1
N λ̃M+1|

λM+1
= O

(
δ−1/2(N2γ+γη/2−1/2 +N ζη+γ(1−η) +N ζη+γ(1−η)/2−1/2)

)
.

Following the earlier proof sketch, we must show the RHS tends to a value less than 1.
To ensure the first of the three summands is small, we choose γ ∈ (0, 1

4+η ). Given this
choice, for large N the third summand in the error term is always smaller than the second,
so that this entire term is o(1) given the supposition that ζ ≤ γ η−1

η . We conclude that if

M = N−ζ for ζ ∈ (0, γ η−1
η ) with probability 1− δ, the lower bound in Lemma 27 is at least

NλM+1 = Ω(N1−ζη).

In the case of D-dimensional Matérn kernels and a uniform covariate distribution (η =
2ν+D
D ), by choosing ζ as large as possible, this means that for an arbitrary ε > 0, the KL-

divergence is lower bounded by an increasing function ofN if fewer than Ω
(
N

2νD
(2ν+5D)(2ν+D)

−ε
)

inducing variables are used. This lower bound on the number of inducing variables becomes
vacuous (i.e. the exponent tends to 0) as η → 1 from above, meaning it is not useful when
applied to many kernels that we expect would be very difficult to approximate. There is a
large gap between the upper and lower bound, particularly when η is near 1 (i.e. for non-
smooth kernels). The gap between the bounds is in part introduced by needing to choose
M so that the error term from Lemma 28 remains lower order. If we heuristically allow
ourselves to replace matrix eigenvalues with the corresponding scaled operator eigenvalues

and neglect the error term, we obtain a lower bound of Ω(N
1
η ), bringing the lower bound

7. See Seeger et al. (2008) for more details on the derivation of this from Widom’s Theorem.
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more closely in line with the upper bound of O(N
1

η−1 ). The remaining gap between these
bounds is essentially due to only bounding a single eigenvalue in the lower bound, while
bounding the sum of eigenvalues in the upper bound. Improving the analysis to close the
gap between the upper and lower bounds is important for better understanding the efficacy
of sparse methods with non-smooth kernels.

7. Practical Considerations

Up to this point, we proved statements about the asymptotic scaling properties of variational
sparse inference. Our results indicated which models could be well-approximated with
relatively few inducing points for sufficiently large data sets. In this section, we investigate
the limitations and practical implications of our results to real situations with finite amounts
of data. We consider the applicability of our results to practical implementations, and
perform empirical analyzes on how marginal likelihood bounds converge. Additionally, our
proof suggests a specific procedure for choosing inducing points that differs from methods
that are currently commonly applied. We empirically investigate this procedure, and provide
recommendations on how to initialize inducing points.

7.1 Finite Precision in Practical Implementations

Any practical implementation of a Gaussian process method will be influenced by the finite
precision with which floating-point numbers are represented in a computer. These issues
are not explicitly addressed in our mathematical analysis, which assume calculations are
in exact arithmetic. Here, we briefly discuss the effects of this finite precision on 1) the
implementation, 2) the precision to which we can expect convergence in practice compared
to our analysis, and 3) the way that this is quantified by marginal likelihood bounds.

7.1.1 Ill-conditioning & Cholesky Decomposition Failure

Finding various quantities for Gaussian process regression requires computing log determi-
nants and matrix inverses. When the smallest and largest eigenvalues of the kernel matrix
are many orders of magnitude apart, these computations become ill-conditioned, meaning
that small changes on the input can lead to large changes to the output. For example, tiny
changes in the elements of the vector fX can lead to huge variations in the vector K−1

ff fX
when Kff has an eigenvalue close to zero (see Deisenroth et al., 2019, §6.2 for a visual il-
lustration). This typically occurs when considering many highly-correlated inputs to the
GP (e.g clusters of nearby points with similar input values). These points have a high
probability of having very similar function outputs under the prior. This ill-conditioning
arises naturally in GPs when considering e.g. evaluating the prior density on function values:
small differences in the function values result in huge changes to the value of the probability
density. If the sensitivity of the calculations becomes too large, then the finite precision
with which numbers are represented can lead to considerable error.

In the variational methods we consider, determinants and inverses are found based on
the Cholesky decomposition of the kernel matrix: Kff + σ2I for exact implementations, and
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Kuu for sparse approximations.8 When faced with a problem that is too ill-conditioned,
most Cholesky implementations terminate with an exception. This can be seen as desirable
from the point of view that a successful run usually indicates an accurate result.

Even in cases when the data set can be well-described by a GP model with hyperparam-
eters that lead to reasonably well-conditioned matrices, conditioning problems frequently
arise during training, when the log marginal likelihood or ELBO is values for other candidate
hyperparameter values. For example, for stationary kernels, large lengthscales contribute
to conditioning problems, as they increase the correlation between distant points. Hyper-
parameters are typically found by (approximately) maximizing the log marginal likelihood
(Eqs. 6 and 9). Since these objective and their derivatives can be evaluated in closed-
form, fast-converging quasi-Newton methods such as (L-)BFGS are commonly used. These
methods often propose large steps, which lead to the evaluation of hyperparameter settings
where the Cholesky decomposition raises an exception. Even though these hyperparameter
settings are often of poor quality, (L-)BFGS still requires an evaluation of the objective func-
tion to continue the search. The Cholesky errors must therefore be avoided to successfully
complete the entire optimization procedure.

7.1.2 Improving Matrix Conditioning

Increasing the smallest eigenvalue of the kernel matrix improves the conditioning. In exact
implementations this can be done by increasing the likelihood noise variance, as we need
to decompose Kff + σ2I which has eigenvalues that are lower-bounded by σ29. On the
other hand, the sparse variational approximation requires inverting Kuu without any noise.
However, it is important to note that the conditioning of Kuu is better than Kff for two
reasons. Firstly, it is a smaller matrix, and often issues of conditioning are less severe for
smaller matrices. Secondly, if inducing points are selected using a method that introduces
negative correlations clusters of highly-correlated points are unlikely to appear in Kuu.
Nevertheless, it is still possible for the Cholesky decomposition to fail, particularly when
trying different hyperparameter settings when maximizing the ELBO.

To improve robustness in the sparse approximation, a small diagonal “jitter” matrix
εI, with ε commonly around 10−6, is added to Kuu, introducing a lower bound the on its
eigenvalues. This change is often enough to avoid decomposition errors during optimiza-
tion. While this modification changes the problem that is solved, the effect is typically
small. Some software packages (e.g. GPy, since 2012) increase jitter adaptively by catching
exceptions inside the optimization loop to only introduce bias where it is necessary.

7.1.3 Quantifying the Effect of Jitter

Adding jitter to the covariance matrix Kuu corresponds to defining the inducing variables as
noisy observations of the GP. While this still produces a valid approximation to the posterior
and ELBO (Titsias, 2009a), the approximation obtained is generally of marginally lower
quality and there is a small amount of corresponding slack in the ELBO (Matthews, 2016,

8. Conjugate gradient and Lanczos methods also give exact answers when they are run for sufficient iter-
ations, and have been successfully applied in practice (Gibbs and Mackay, 1997; Davies, 2015; Gardner
et al., 2018).

9. This can be done by reparameterizing the noise to have a lower bound.
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Theorem 4). We summarize the effect on the ELBO and upper bound U2 in the following
proposition. Define Qff(ε) := KT

uf(Kuu + εI)−1Kuf, so that Qff(0) = Qff.

Proposition 34 Let Lε denote the evidence lower bound computed with jitter ε ≥ 0 added
to Kuu, that is

Lε = −1

2
log det(Qff(ε) + σ2I)− 1

2
yT(Qff(ε) + σ2I)−1y − N

2
log 2π − 1

2σ2
tr(Kff −Qff(ε)).

Then Lε is monotonically decreasing in ε. Similarly if Uε denotes the upper bound Eq. (12)
computed with added jitter to Kuu, that is

Uε := −1

2
log det(Qff(ε) + σ2I)− 1

2
yT(Qff(ε) + tr(Kff −Qff(ε))I + σ2I)−1y − N

2
log 2π.

Then Uε is monotonically increasing in ε. In particular, adding jitter can only make the
upper bound on the log marginal likelihood larger and the ELBO smaller.

The proof (Appendix F) is a consequence of Qff(ε) + σ2I � Qff(ε′) + σ2I for ε′ > ε ≥ 0.
Proposition 34 shows that even with jitter the upper and lower bounds are still valid.
However, they are not exactly equal, even when M = N , due to the additional gap caused
by the jitter. From a practical point of view, the impact is typically very small, with a gap
being introduced on the order of a few nats.

To summarize, we saw 1) that jitter was needed to stabilize the computation of the
hyperparameter objective functions using standard implementations of Cholesky decom-
position, and 2) that jitter and finite floating-point precision prevented the approximate
posterior and bounds from converging to their exact values. Notably, we can quantify the
effect of the finite precision calculations using the same bounds as what is used to deter-
mine the effect of using an approximate inducing point posterior (Proposition 34). The
variational bounds we analyzed in this work therefore provide a unified way of measuring
the effect of both exact arithmetic approximate posteriors and the impact of finite precision
arithmetic on the quality of the approximation.

7.2 Placement of Inducing Inputs

When training a sparse Gaussian process regression (Titsias, 2009b) model, we need to
select the kernel hyperparameters as well as the inducing inputs, with the hyperparameters
determining the generalization characteristics of the model, and the inducing inputs the
quality of the sparse approximation. In the time since Snelson and Ghahramani (2006)
and Titsias (2009b) introduced joint objective functions for all parameters, it has become
commonplace to find the final set of inducing variables by optimizing the objective function
together with the hyperparameters. Because this makes the inducing input initialization
procedure less critical for final performance, less attention has been placed on it in recent
years than in e.g. the kernel ridge regression literature.10 However, the number of optimiza-
tion parameters added by the inducing inputs is often large, and convergence can be slow,
which makes the optimization cumbersome.

10. Kernel ridge regression lacks a joint objective function for the approximation and hyperparameters.
Hyperparameters are commonly selected through cross-validation.
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Our results suggest that gradient-based optimization of the ELBO is not necessary
for setting the inducing variables. Selecting enough of inducing points is sufficient for
obtaining an arbitrarily good approximation. For the common squared exponential kernel if
hyperparameters are fixed, our upper and lower bounds imply that optimization of inducing
points leads to at most a constant factor fewer inducing points than a good initialization. In
this section, we investigate the performance of various inducing point selection methods in
practice. We consider commonly used methods (uniform sampling, K-means, and gradient-
based optimization), and methods that our proofs are based on (M -DPP and RLS). In
addition, we propose using the intialization used for approximately sampling the M -DPP
(Algorithm 1) as an inducing point selection method. While our theoretical results do not
prove anything for this method, it avoids the additional cost and complexity of running
a Markov chain, while still being leading to negative correlations between inducing point
locations. We refer to this method as greedy variance selection, since it greedily selects the
next inducing point based on which has the highest marginal variance in the conditioned
prior p(f |u), i.e. argmax diag[Kff −KufK

−1
uu Kuf].

11

We set the free parameters for each of the methods as follows. For K-means, we run
the Scipy implementation of K-means++ with M centres. Gradient-based optimization
is initialized using greedy variance selection. This choice was made since it was found
to perform better than uniform selection, and our goal is to quantify how much can be
gained by doing gradient-based optimization, and whether it is worth the cost. We ran 104

steps of L-BFGS, at which point any improvement was negligible compared to adding more
inducing variables. Approximate M -DPP sampling was done following Algorithm 1, using
104 iterations of MCMC. For RLS, we use an adaptation of the public implementation of
Musco and Musco (2017, Algorithm 3), which omits many of the constants derived in the
proofs, and therefore loses theoretical guarantees.12 We additionally modify the algorithm
to ensure that it selects exactly M inducing points.

We consider 3 data sets from the UCI repository that are commonly used in benchmark-
ing regression algorithms, “Naval” (Ntrain = 10740, Ntest = 1194, D = 14) , “Elevators”
(Ntrain = 14939, Ntest = 1660, D = 18) and “Energy” (Ntrain = 691, Ntest = 77, D = 8).
These data sets were chosen as near-exact sparse approximations could be found, so conver-
gence could be illustrated.13 Naval is the result of a physical simulation and the observations
are essentially noiseless. To make statistical estimation more difficult, we add independent
Gaussian noise with standard deviation 0.0068 to each observation. For all experiments,
we use a squared exponential kernel with automatic relevance determination (ARD), i.e. a
separate lengthscale per input dimension.

11. An equivalent approach, derived through different motivations, has been previously used for approximat-
ing the kernel matrix in SVMs (Fine and Scheinberg, 2001) and applied to sparse GP approximations
(Foster et al., 2009).

12. Their implementation is available at: https://github.com/cnmusco/recursive-nystrom.
13. Not all data sets exhibit this property. For instance, the “kin40k” data set still isn’t near convergence

when M = N
2

due to very short optimal lengthscales. A step functions being present would cause this,
and would indicate that squared exponential kernels are inappropriate.
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7.2.1 Fixed Hyperparameters

We first consider regression with fixed hyperparameters to illustrate convergence in a sit-
uation that is directly comparable to our theoretical results. We investigate which of the
inducing point selection methods recovers the exact model with the fewest inducing points.
The hyperparameters are set to the optimal values for an exact GP model, or for “Naval”
a sparse GP with 1000 inducing points. We find the hyperparameters by maximizing the
exact GP log marginal likelihood using L-BFGS. This setting is for illustrative purposes
only, as computing exact log marginal likelihood is not feasible in practical situations where
sparse methods are of actual interest. In the next section we consider hyperparameters that
are learned using the ELBO (Eq. 9).

Figure 5 shows the performance of various methods of selecting inducing points as we
varyM , as measured by the evidence lower bound, test root mean squared error and per data
point test negative log predictive density. From the results, we can observe the following:

• For very sparse models where the ELBO is considerably lower than the true marginal
likelihood, gradient-based tuning of the inducing inputs consistently performs best in
all metrics.

• The benefit of gradient-based tuning is small when many inducing points are added,
provided they are added in the good locations. Greedy variance selection and M -DPP
find these good locations, as they consistently recover the true GP’s performance with
only a small number of additional inducing variables.

• K-means, uniform subsampling, and RLS tend to underperform, and require far more
inducing variables to converge to the exact solution. In our experiment, they never
converge quicker than greedy variance selection.

• In terms of the upper bound, greedy variance selection and M -DPP sampling both
provide the best results.

Greedy variance selection seems to provide all the desirable properties in this case:
convergence to the exact results with few inducing variables, simple to implement, and
fast since it does not require as many expensive operations as optimization or sampling.
The approximate ridge leverage score algorithm is also reasonably fast, and perhaps careful
tuning of hyperparameters or different algorithms for approximate ridge leverage scores
could lead to improved performance in practice.

7.2.2 Training procedure and hyperparameter optimization

In the previous section, the hyperparameters were fixed to values maximizing the log
marginal likelihood. When sparse GP approximations are applied in practice, these op-
timal values are unknown, and they are instead found via maximizing the ELBO, as an
approximation to maximizing the exact log marginal likelihood. This comes at the cost of
introducing a bias in the hyperparameters towards models where KL[Q||P ] is small (Turner
and Sahani, 2011), as implied by Eq. (8). The most noticeable effect in sparse GP regres-
sion is the overestimation of σ2 and a bias toward models with smoother sample functions
(Bauer et al., 2016).
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Figure 5: Performance of various methods for selecting inducing inputs on 3 data sets (each
column corresponds to one data set) with fixed model hyperparameters. The top
row shows the evidence lower bounds as well as an upper bound on the log
marginal likelihood (U2 in Lemma 2), the middle row the per datapoint negative
log predictive density on held-out test points and the bottom row the root mean
square error on test data. The solid lines show the median of 10 initializations
using the given method for selecting inducing inputs, while the shaded region
represents the 20 − 80%. The dashed black line shows the performance of the
exact GP regressor on the given data set.

Our results imply that for large enough data sets, an approximation with high sparsity
can be found for the optimal hyperparameter setting that has a small KL-divergence to
the posterior. This implies that the bias in the hyperparameter selection also is likely
to be small. An impediment to finding the high-quality approximation for the optimal
hyperparameters, is that our results depends on the inducing inputs being chosen based on
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properties of the kernel with the same hyperparameters that are used for inference. Here,
we investigate several procedures for jointly choosing the hyperparameters and inducing
inputs, in the regime where enough inducing variables are used to recover a close to exact
model.

We propose a new procedure based on the greedy variance selection discussed in the
previous section. To account for the changing hyperparameters, we alternately optimize the
hyperparameters, and reinitialize the inducing inputs with greedy variance selection using
the updated hyperparameters. This avoids the high-dimensional non-convex optimization
of the inducing inputs, while still being able to tailor the inducing inputs to the kernel.
In effect, the method behaves a bit like variational Expectation-Maximization (EM) (Beal
and Ghahramani, 2003), with the inducing input selection taking the place of finding the
posterior. When enough inducing points are used, the reinitialization is good enough to
make the ELBO almost tight for the current setting of hyperparameters. We terminate
when the reinitialization does not improve the ELBO. We note that reinitialization would
not benefit K-means or uniform initializations (beyond random chance), as the inducing
points that are selected do not depend on the setting of the kernel hyperparameters.

We start our evaluation by running all methods from the previous section in addition
to greedy variance selection with reinitialization (Fig. 6). The initial inducing inputs are
set with the untrained initialized hyperparameters, after which the hyperparameters are
maximized w.r.t. ELBO (Eq. 9) using L-BFGS, with the reinitialization being applied for
“Greedy variance (reinit.)”. We observe that the reinitialized greedy variance method pro-
vides consistent fast convergence to the exact model.

To evaluate the benefit of gradient-based optimization, we compare it to the reinitialized
greedy variance method (the best from Fig. 6), as well as K-means. For the initial setting of
the inducing inputs when optimizing inducing inputs, we use the greedy variance selection
(denoted “gradient”). Since Fig. 6 shows that optimization of the inducing inputs is not
needed to converge to the exact solution, the question becomes whether it is faster to
perform gradient-based optimization. We choose M to be the smallest value for which the
ELBO given by the gradient method converges to within a few nats of the exact marginal
likelihood based on Fig. 5. We plot the optimization traces in Fig. 7 for several runs to
account for random variation in the initializations.

In this constrained setting, we see different behaviours on the different data sets. One
constant is that placing inducing points using K-means leads to sub-optimal performance
compared to the best method. For the Energy data set, “greedy var (reinit)” suffers from
convergence to local optima. This is caused by the low sparsity, and disappears if more
inducing points are used (see Fig. 6). For the Naval data set, we see very slow convergence
when using gradient-based optimization initialized with greedy variance selection. K-means
underperforms and also suffers from local optima, with reinitialization reliably reaching the
best ELBO. For elevators, reinitialization reaches the optimal ELBO fastest.

We note that in the reinitialization method the hyperparameter optimization step was
terminated when L-BFGS had determined convergence according to the default Scipy set-
tings. This leads to a characteristic “step” pattern in the optimization traces, where progress
halts for many iterations towards the end of a hyperparameter optimization phase, followed
by large gains after a reinitialization of the inducing inputs. By terminating the hyperpa-
rameter optimization earlier after signs of stagnation, the reinitialization method could be
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Figure 6: Performance of various methods for selecting inducing inputs on 3 data sets (each
column corresponds to one data set) with model parameters learned via L-BFGS.
The top row shows the evidence lower bounds, the middle row the per datapoint
negative log predictive density on held-out test points and the bottom row the
root mean square error on test data. The solid lines show the median of 10 initial-
izations using the given method for selecting inducing inputs, while the shaded
region represents the 20− 80%. The dashed black line shows the performance of
the exact GP regressor on the given data set.

significantly sped up. In addition, we measure computational cost through the number of
function evaluations. This does not take into account the additional cost of computing the
gradients for the inducing inputs, which make up the bulk of parameters that are to be
optimized. As the amount of computation needed to reinitialization the inducing points is
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Figure 7: ELBO against the number of function evaluations called during a run of L-BFGS.
“Gradient” uses gradient-based optimization for the inducing inputs as well as
the hyperparameters, with the inducing inputs initialized using greedy variance
selection.

comparable to the computation required in as single iteration of gradient descent, Fig. 7
likely understates the computational savings of the reinitialization method.

7.2.3 Recommendation for Inducing Input Selection

The main conclusion from our empirical results is that well-chosen inducing inputs that are
reinitialized during hyperparameter optimization give highly accurate variational approxi-
mations to the results of exact GPs. While performing gradient-based optimization of the
inducing inputs may lead to improved performance in settings that are constrained to be
very sparse, in some instances it is not worth the additional effort. We provide a GPflow-
based (Matthews et al., 2017) implementation of the initialization methods and experiments
that builds on other open source software (Coelho, 2017; Virtanen et al., 2020), available
at https://github.com/markvdw/RobustGP.

It is important to note that we only considered data sets where sparse approximations
were practically possible. The “kin40k” UCI data set is a notable example where a squared
exponential GP regression model with learned hyperparameters could not accurately be
approximated, due to a lengthscale that continuously decreased with increasing M . Given
the underfitting and significant hyperparameter bias (Bauer et al., 2016), one can question
whether variational approximations are appropriate. In cases where the covariates are less
heavily correlated under the prior, conjugate gradient approaches (Gibbs and Mackay, 1997;
Davies, 2015; Gardner et al., 2018) may be better. We choose to not make a recommendation
for how to choose inducing variables in cases where the variational approximation is poor.

8. Conclusions

We provide guarantees on the quality of variational sparse Gaussian process regression when
many fewer inducing variables are used than data points. We also consider lower bounds on
the number of inducing variables needed in order to ensure that the KL-divergence between
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the approximate posterior and the full posterior is not large. These bounds provide insight
into the number of inducing points that should be used for a variety of tasks, as well
as suggest the sorts of problems to which sparse variational inference is well-suited. We
also include an empirical results comparing the efficacy of different methods for selecting
inducing inputs, which is of practical importance to the Gaussian process community. We
believe that there is a great deal of interesting future research to be done on the role of
sparsity in variational Gaussian process inference; both in refining the bounds given in this
work and in better understanding non-conjugate inference schemes, such as those developed
in Hensman et al. (2015).
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Appendix A. Proof of Bound on Mean and Variance of One-dimensional
Marginal Distributions

Proposition 1 Suppose 2KL[Q||P ] ≤ γ ≤ 1
5 . For any x? ∈ X , let µ1 denote the posterior

mean of the variational approximation at x? and µ2 denote the mean of the exact posterior
at x? . Similarly, let σ2

1, σ
2
2 denote the variances of the approximate and exact posteriors at

x?. Then,

|µ1 − µ2| ≤ σ2
√
γ ≤ σ1

√
γ√

1−√3γ
and |1− σ2

1/σ
2
2| <

√
3γ.

Proof By the chain rule of KL-divergence, we have

2KL[q(f(x∗))||p(f(x∗)|D)] ≤ 2KL[Q||P ] ≤ γ (30)

for any x? ∈ X .

For any x? ∈ X , the KL-divergence on the right hand side of Eq. (30) is a KL-divergence
between one-dimensional Gaussian distributions, and has the form,

γ ≥ 2KL[q(f(x∗))||p(f(x∗)|D)] =
σ2

1

σ2
2

− 1− log
σ2

1

σ2
2

+
(µ1 − µ2)2

σ2
2

≥ σ2
1

σ2
2

− 1− log
σ2

1

σ2
2

. (31)

Define r = σ2
1/σ

2
2, so Eq. (31) becomes γ ≥ r−1− log r. For γ < 1

5 , we have r− log(r) < 1.2,
so r ∈ [.493, 1.78]. For r in this range, we have, γ ≥ r − 1− log r ≥ (r − 1)2/3. Solving, for
r, we obtain the bound, ∣∣∣∣1− σ2

1

σ2
2

∣∣∣∣ ≤√3γ. (32)
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We now turn to the proof of the bound relating µ1 and µ2. From Eq. (31) and because

r − 1− log r > 0 for r > 0, (µ1−µ2)2

σ2
2

≤ γ. Rearranging, |µ1 − µ2| ≤ σ2
√
γ. The final bound

on the mean follows from Eq. (32), which implies that,

σ2 ≤
σ1√

1−√3γ
.

Appendix B. Proofs of A-Posteriori Bounds

In this section, we restate and prove the upper bound on the marginal likelihood given in
Titsias (2014).

Lemma 2 (Titsias, 2014) For any y ∈ RN , X ∈ XN , and set of M inducing variables,
U ,

log p(y) ≤ U1 ≤ U2

where

U1 := −1

2
log det(Qff + σ2I)− 1

2
yT(Qff + ‖Kff −Qff‖opI + σ2I)−1y − N

2
log 2π,

and

U2 := −1

2
log det(Qff + σ2I)− 1

2
yT(Qff + tI + σ2I)−1y − N

2
log 2π. (12)

This result relies on several properties of symmetric positive semi-definite (SPSD) ma-
trices, which we state in Proposition 35.

Proposition 35 (Horn and Johnson (1990), Corollary 7.7.4) Let � denote the par-
tial order on SPSD matrices induced by A � B ⇐⇒ A − B is SPSD. Then if A � B are
N ×N SPSD matrices,

1. det(A) ≥ det(B),

2. If A−1, B−1 exist, then A−1 ≺ B−1.

3. If λ1(A) ≥ . . . ≥ λN (A), λ1(B) ≥ . . . ≥ λN (B) denote the eigenvalues of A and B
respectively, λi(A) ≥ λi(B) for all 1 ≤ i ≤ N .

We also use that Qff ≺ Kff, which follows from properties of Schur complements of PSD
matrices (Gallier, 2010, Proposition 2.1).
Proof of Lemma 2 This proof follows that of Titsias (2014). Recall Eq. (6),

log p(y) = −1

2
log det(Kff + σ2I)− 1

2
yT(Kff + σ2I)−1y − N

2
log 2π

≤ −1

2
log det(Qff + σ2I)− 1

2
yT(Kff + σ2I)−1y − N

2
log 2π

≤ −1

2
log det(Qff + σ2I)− 1

2
yT(Qff + ‖Kff −Qff‖opI + σ2I)−1y − N

2
log 2π

= U1. (33)
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The first inequality uses Kff + σ2I � Qff + +σ2I, which implies log det(Kff + σ2I) ≥
log det(Qff + σ2I). The second inequality uses that Kff ≺ Qff + ‖Kff − Qff‖opI and the
second part of Proposition 35.

In problems where sparse GP regression is applied, computing the largest eigenvalue
of Kff − Qff is computationally prohibitive. However, we can use the upper bound ‖Kff −
Qff‖op ≤ tr(Kff −Qff), yielding

U1 ≤ −
1

2
log det(Qff + σ2I)− 1

2
yT(Qff + tr(Kff −Qff)I + σ2I)−1y − N

2
log 2π = U2.

The bound U2 can be computed in time O(NM2) with memory O(NM) in much the same
way as the ELBO is computed, as it only depends on the low-rank matrix Qff and the
diagonal entries of Kff.

Appendix C. Proofs for Results Leading to Upper bounds on the
KL-divergence

In this appendix, we restate and provide proofs for the results in Section 4.

Lemma 3 For any y ∈ RN , X ∈ XN , and any Z ∈ XM

KL[Q||P ] ≤ U1 − L ≤
1

2σ2

(
t+

ζ‖y‖22
ζ + σ2

)
≤ 1

2σ2

(
t+

t‖y‖22
t+ σ2

)
,

with t = tr(Kff −Qff) and ζ = ‖Kff −Qff‖op.

Proof We apply the matrix identity (A+B)−1 = A−1−A−1B(A+B)−1 to the expression

U1 − L =
t

2σ2
+

1

2
yT
(
(Qff + σ2I)−1 − (Qff + ζI + σ2I)−1

)
y,

with A = Qff + σ2I and B = ζI. This gives

U1 − L =
t

2σ2
+
ζ

2
yT
(
(Qff + σ2I)−1(Qff + (ζ + σ2)I)−1

)
y

=
t

2σ2
+
ζ

2
yT(Q2

ff + (ζ + σ2)Qff + σ2(ζ + σ2)I))−1y.

The matrix Q2
ff + (ζ+σ2)Qff is SPSD, as it is the product of SPSD matrices that commute.

This implies that the eigenvalues of Q2
ff + (ζ + σ2)Qff + σ2(ζ + σ2)I are bounded below

by σ2(ζ + σ2). As the eigenvalues of the inverse of a SPSD matrix are the inverse of the
eigenvalues of the original matrix, the largest eigenvalue of (Q2

ff+(ζ+σ2)Qff+σ2(ζ+σ2)I))−1

is bounded above by (σ2(ζ + σ2))−1. Therefore,

KL[Q||P ] ≤ U1 − L ≤
t

2σ2
+

ζ‖y‖22
2σ2(ζ + σ2)

. (34)

47



Burt, Rasmussen, van der Wilk

This proves the second inequality in Lemma 3. The same argument using U2 in place of U1

yields,

KL[Q||P ] ≤ t

2σ2
+

t‖y‖22
2σ2(t+ σ2)

.

Lemma 4 Suppose y|X,Z ∼ N (0,Kff + σ2I). For any X ∈ XN and Z ∈ XM ,

t/(2σ2) ≤ E[KL[Q||P ] |Z = Z,X = X] ≤ t/σ2

where t = tr(Kff−Qff) and Kff and Qff are defined with respect to this X,Z as in Section 2.

We have already proven the lower bound in the main body. In order to prove the upper
bound in Lemma 4, we use a Hölder-type inequality, Tao (2012, Exercise 1.3.26).

Proposition 36 For any matrix, let ‖A‖p := (
∑

i |σi(A)|p)1/p if p is finite and ‖A‖∞ =
maxi |σi(A)|, where σi(A) are singular values of A. Then for A,B ∈ Rn×n and any 1 ≤
p, q ≤ ∞ such that 1

p + 1
q = 1,

tr(AB) ≤ ‖A‖p‖B‖q.
In particular, if A and B are SPSD (so that the singular values agree with the eigenvalues),
taking p = 1, q =∞,

tr(ABT) ≤ tr(A)‖B‖op.
where ‖B‖op is the largest eigenvalue of B.
Proof of Lemma 4

For the upper bound, it remains to bound

kl(Kff,Qff) := KL
[
N (0,Kff + σ2I)||N (0,Qff + σ2I)

]
.

kl(Kff,Qff) =
1

2

(
log det(Qff + σ2I)− log det(Kff + σ2I)−N + tr((Qff + σ2I)−1(Kff + σ2I))

)
≤ 1

2

(
−N + tr((Qff + σ2I)−1(Kff + σ2I)

)
=

1

2

(
−N + tr((Qff + σ2I)−1((Qff + σ2I) + (Kff −Qff))

)
=

1

2
tr((Qff + σ2I)−1(Kff −Qff)). (35)

The inequality uses that Qff + σ2I ≺ Kff + σ2I, so det(Qff + σ2I) ≤ det(Kff + σ2I) by
Proposition 35. We can now apply Proposition 36 with p = 1, q =∞ to Eq. (35) giving,

1

2
tr((Qff + σ2I)−1(Kff −Qff)) ≤ t

2
‖(Qff + σ2I)−1‖op ≤

t

2σ2
.

Using this bound in Eq. (35) and combining with Eq. (15) completes the proof of the upper
bound.
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Appendix D. Derivations of bounds for specific kernels and covariate
distributions

In this appendix, we restate and provide proofs for the results in Section 5.

D.1 Bounds for Univariate Gaussian distributions and Squared Exponential
Kernel

Corollary 19 Let k be a squared exponential kernel. Suppose that N real-valued (one-
dimensional) covariates are observed, with identical Gaussian marginal distributions. Sup-
pose the conditions of Theorem 13 are satisfied for some R > 0. Fix any γ ∈ (0, 1]. Then
there exists an M = O(log(N3/γ)) and an ε = Θ(γ/N2) such if inducing points are dis-
tributed according to an ε-approximate M -DPP with kernel matrix Kff,

E[KL[Q||P ]] ≤ γ.

Similarly, for any δ ∈ (0, 1/32) using the ridge leverage algorithm of Musco and Musco

(2017) and choosing S appropriately, with probability 1−5δ, M = O
(

log N2

δ2γ
log log(N2/δ2γ)

δ

)
and

KL[Q||P ] ≤ γ.
The implicit constants depend on the kernel hyperparameters, the likelihood variance, the
variance of the covariate distribution and R.

Proof of Corollary 19 Using Eq. (24) and applying the geometric series formula,

∞∑
m=M+1

λm =

√
2a

A

BM

1−B .

We can use this equation in Theorem 13 (a similar result could be obtained using Theo-
rem 14) yielding,

E[KL[Q||P ]] ≤
(√

2a

A

(M + 1)NBM

2σ2(1−B)
+
Nvε

σ2

)(
1 +

RN

σ2

)
.

Choose ε = γσ2

2Nv(1+RN/σ2)
= Θ(γ/N2). By Lemma 9, an M -DPP can be sampled to

this level of accuracy using not more than O(NM(log N2

γδ )) iterations of MCMC, making

the computational cost of selecting inducing inputs O(NM3(log N2

γδ )). We may assume that
M < N , otherwise by choosing Z = X the KL-divergence is zero and nothing more needs
to be shown. Then,

E[KL[Q||P ]] ≤
√

2a

A

N2BM

2σ2(1−B)

(
1 +

RN

σ2

)
+
γ

2

Take M = logB

√
A
2a

γδσ2(1−B)
N2(1+RN/σ2)

= O(log(N3/γδ)), then

E[KL[Q||P ]] ≤ γ.
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In the case of ridge leverage score initializations, from Theorem 17 we have with probability
1− 5δ,

KL[Q||P ] ≤
√

2a

A

N2BS

S(1−B)δ2σ2
(1 +R/σ2)

and M ≤ S log S
δ . Choose S = logB

√
A
2a

γσ2(1−B)δ2

N2(1+R/σ2)
. Then on the event where these bounds

hold, KL[Q||P ] ≤ γ
S ≤ γ and M ≤ S log S

δ = O
(

log N2

δ2γ
log log(N2/δ2γ)

δ

)
. If we allow the

implicit constant to depend on δ and γ as well this becomes O(logN log logN).

D.2 Bounds for Multivariate Gaussian distributions and Squared Exponential
Kernel

Proposition 21 For a SE-kernel and Gaussian distributed covariates in RD, for M ≥
1
αD

D + D − 1,
∑∞

m=M+1 λm = O(M exp(−αM1/D)), where α = − logB > 0 and the
implicit constant depends on the dimension of the covariates, the kernel parameters and the
covariance matrix of the covariate distribution.

Proof of Proposition 21 The proof of this proposition is nearly identical to an argument
in Seeger et al. (2008). Consider the upper bound,

λM+D−1 ≤
(

2a

A

)D
2

BM1/D
.

Define M̃ = M −D + 1, then for M > D − 1,

∞∑
m=M+1

λm ≤
(

2a

A

)D
2

∞∑
m=M̃+1

Bm1/D ≤
(

2a

A

)D
2
∫ ∞
s=M̃

Bs1/D ds

=

(
2a

A

)D
2

Dα−D
∫ ∞
t=αM̃1/D

exp(−t)tD−1 dt

=

(
2a

A

)D
2

Dα−DΓ(D,α(M −D + 1)1/D)

where in the second to last line we make the substitution t = αs1/D and in the final line we
recognized the integral as an incomplete Γ-function.

From Gradshteyn and Ryzhik (2014, 8.352) for integer D and r > 0,

Γ(D, r) = (D − 1)!e−r
D−1∑
k=0

rk

k!
.

For fixed D and r large (which is satisfied by the condition M ≥ 1
αD

D + D − 1), we have
that the final term in the above sum is the largest, so that

Γ(D, r) ≤ D!e−r
rD−1

(D − 1)!
= De−ryD−1
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Using this bound, we arrive at

∞∑
m=M+1

λm ≤
(

2a

A

)D
2

D2α−D exp(−α(M −D + 1)1/D)(α(M −D + 1)1/D)D−1

≤
(

2a

A

)D
2 D2(M −D + 1)

α
exp(−α(M −D)1/D) = O(M exp(−αM1/D)).

Corollary 22 Let k be a SE-ARD kernel in D-dimensions. Suppose that N D-dimensional
covariates are observed, so that each covariate has an identical multivariate Gaussian dis-
tribution, and that the distribution of training outputs satisfies E

[
‖y‖2

∣∣X] ≤ RN . Fix any
γ ∈ (0, 1]. Then there exists an M = O((logN/γ)D) and an ε = O(N2/γ) such if inducing
inputs are distributed according to an ε-approximate M -DPP with kernel matrix Kff,

E[KL[Q||P ]] ≤ γ.

The implicit constant depends on the kernel hyperparameters, the variance matrix of the
covariate distribution, D and R. With the same assumptions but applying the RLS algorithm
of Musco and Musco (2017) to selecting inducing inputs, for any δ ∈ (0, 1/32) there exists

a choice of S such that with probability 1− 5δ, M = O
((

log N2

δγ

)D
(log log N2

δγ + log(1/δ)

)
and

KL[Q||P ] ≤ γ.
Proof Corollary 22 is a consequence of Theorem 13 and Proposition 21. In the case of the

M -DPP, we take ε = γσ2

2Nv(1+RN/σ2)
= Θ(γ/N2) as in the proof of Corollary 19. It then

remains to choose M so that(
N2

2σ2(1−B)

(
1 +

RN

σ2

) ∞∑
m=M+1

λm

)
≤ γ/2.

From Proposition 21, there exists an M = O((log N3

γ )D) that satisfies this criteria. In the

case of ridge leverage scores, it is sufficient to choose S = O
((

log N2

δγ

)D)
, which means

that with probability at least 1− 5δ, M = O
((

log N2

δγ

)D
(log log N2

δγ + log(1/δ))

)
.

D.3 Conditions for Widom’s Theorem

Widom’s Theorem (Widom, 1963), states that for stationary kernels on compact subsets of
Euclidean space, the eigenvalues of the operator K are closely linked to the decay of the
spectral density of the kernel function. The theorem applies to any compactly supported
covariate distribution with Lebesgue density and stationary kernel with spectral density
satisfying the following three conditions:
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1. For all i ∈ {1, · · · , D}, fixing all ω(j), j 6= i, there exists an ω
(i)
0 ∈ R such that s(ω) is

monotonically increasing as a function of ω(i) for all ω(i) < ω
(i)
0 and is monotonically

decreasing as a function of ω(i) for ω(i) ≥ ω(i)
0 .

2. Let {ξi}∞i=1, {ηi}∞i=1, be sequences in RD such that lim
i→∞

‖ηi−ξi‖
‖ηi‖ = 0 and lim

i→∞
‖ξi‖ =∞,

then lim
i→∞

|s(ξi)|
|s(ηi)| = 1.

3. Let {ξi}∞i=1, {ηi}∞i=1, be sequences in RD such that lim
i→∞
‖ξi‖, ‖ηi‖ =∞ and lim

i→∞
‖ξi‖
‖ηi‖ =

0, then lim
i→∞

|s(ξi)|
|s(ηi)| = 0.

If the kernel and spectral density satisfy these conditions, the number of eigenvalues of
K greater than ε is asymptotic (as ε→ 0) to the volume of the collection of points in Rd×Rd

such that p(x)s(ω) > ε. A precise statement of the result can be found in Widom (1963),
and more discussion of the result is given in Seeger et al. (2008). Because of the second
condition, Widom’s theorem cannot be applied to kernels with rapidly decaying spectral
densities, such as the SE-kernel (though more stationary kernels are analyzed in Widom
(1964) for uniformly distributed covariates).

Appendix E. Lower bounds on the number of features

In this appendix, we restate and prove the results stated in Section 6.

E.1 General Lower Bound on KL-divergence

Lemma 27 Given a kernel k, likelihood model with variance σ2 and random covariates X.
Then,

min
Z∈XM

min
y∈RN

KL[Q||P ] ≥ 1

2

N∑
m=M+1

λ̃m
σ2
− log

(
1 +

λ̃m
σ2

)

where λ̃m denotes the mth largest eigenvalue of the matrix Kff determined by the covariates
and kernel.

Proof of Lemma 27 Define L(y, Z) to be the evidence lower bound assuming y are the
observations and inducing points are placed at locations Z. Then for any y ∈ RN and
Z ∈ XM ,

log p(y)− L(y, Z) ≥ log p(0)− L(0, Z)

=
1

2

(
1

σ2
tr(Kff −Qff )− log

det(Kff + σ2I)

det(Qff + σ2I)

)
. (36)

The inequality uses that the only term in log p(y)−L(y, Z) that depends on y is the quadratic
1
2y

T
(
(Qff + σ2I)−1 − (Kff + σ2I)−1

)
y ≥ 0 since (Qff + σ2I)−1 � (Kff + σ2I)−1.

We can rewrite Eq. (36) as a sum over the eigenvalues of Kff and Qff , which we de-
note by λ̃m and ψm respectively. Also, since Kff � Qff , λ̃m ≥ ψm for all 1 ≤ m ≤ N
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(Proposition 35). This yields,

log p(0)− L(0, Z) =
1

2

N∑
m=1

λ̃m −ψm
σ2

− log

(
1 +

λ̃m −ψm
ψm + σ2

)

≥ 1

2

N∑
m=1

λ̃m −ψm
σ2

− log

(
1 +

λ̃m −ψm
σ2

)
(∗)

=
1

2

(
M∑
m=1

λ̃m −ψm
σ2

− log

(
1 +

λ̃m −ψm
σ2

)
+

N∑
m=M+1

λ̃m
σ2
− log

(
1 +

λ̃m
σ2

))
.

In the final line, we use that Qff is at most rank M , so that ψm = 0 for all m > M . It
follows from the inequality log(1 + a) ≤ a for a ≥ 0 that each term in the first sum is
non-negative. Hence,

log p(y)− L(y, Z) ≥ 1

2

N∑
m=M+1

λ̃m
σ2
− log

(
1 +

λ̃m
σ2

)
. (37)

E.2 Lower Bound on Eigenvalues of Multivariate Gaussian Inputs and
Squared Exponential Kernel

Proposition 30 Suppose k is an isotropic SE-kernel in D dimensions with lengthscale `
and variance v. Suppose the training covariates are independently identically distributed
according to an isotropic Gaussian measure, µ, on RD with covariance matrix β2I. For any
r ∈ N, we have

λr ≥
(

2a

A

)D/2
BDr1/D

.

where λr denotes the rth largest eigenvalue of the operator K : L2(RD, µ) → L2(RD, µ) de-
fined by (Kg)(x′) =

∫
g(x)k(x, x′)p(x)dx with p(x) the density of the multivariate Gaussian

at x.

Proof Recall from Section 5.1.1 that the eigenvalues of this operator are of the form,

λr =

(
2a

A

)D/2
Bs

where the number of times each eigenvalue is repeated is equal to the number of ways to
write s as a sum of D non-negative integers, where the order of the summands matters.
This is equal to

(
s+D−1
D−1

)
. The number of eigenvalues greater than (2a/A)D/2Bs is therefore,

s∑
t=1

(
t+D − 1

D − 1

)
=

(
s+D

D

)
.
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The equality follows from observing that the right hand side is equal to the number of way
to write s as a sum of D+1 non-negative integers. For each of these representations, the first
D integers sum to some t ≤ s, and once these are fixed there is a unique choice for the final

integer. This is equivalent to the left hand side. We therefore conclude λ(s+DD ) =
(

2a
A

)D/2
Bs.

Define

r̃ = min
s∈{0}∪N

{(
s+D

D

)
:

(
s+D

D

)
> r

}
,

and let s̃ denote the corresponding s. Then,

λr = λr̃ =

(
2a

A

)D/2
Bs̃ and

(
s̃

D

)
≤
(
s̃− 1 +D

D

)
≤ r.

Using the lower bound,
(
s̃
D

)D ≤ ( s̃D), we obtain s̃ ≤ Dr1/D, completing the proof of the
lower bound.

Proposition 31 Let k be an isotropic SE-kernel. Suppose N covariates are sampled in-
dependent and identically from an isotropic Gaussian density with variance β2 along each
dimension. Define M(N) to be any function of N such that limN→∞M(N)/(logN)D = 0;
i.e. M(N) = o((logN)D). Suppose inference is performed using any set of inducing inputs,
Z such that |Z| = M(N). Then for any y ∈ RN , for any ε > 0 and for any δ ∈ (0, 1), with
probability at least 1− δ, KL[Q||P ] = Ω(N1−ε).

Proof By Lemma 28 and Proposition 21, for δ ∈ (0, 1), with probability 1− δ,

|λm − 1
N λ̃m|

λm
= O

(
r2λmλ

−1/2
r N−1/2δ−1/2 + r exp(−αr1/D) +

√
r exp(−αr1/D)

Nδ

)
. (38)

with α = − logB for any 1 ≤ r ≤ N . Using Proposition 30 we have,

|λm − 1
N λ̃m|

λm
=O

(
r2N−

1
2 exp(αDr

1
D /2)δ−

1
2 +

r

λm
exp(−αr 1

D ) +
1

λm

√
r exp(−αr1/D)

Nδ

)
.

For γ ∈ (0, 1/2), choose r = d( 1
αD logNγ)De, then noting that for this choice of r, the third

term in the sum is smaller than the second term,

|λm − 1
N λ̃m|

λm
= O

(
δ−1/2

(
r2N (γ−1)/2 + λ−1

m rN
−γ
D

))
.

Applying Proposition 30, with M + 1 = b( 1
D logB N

−ζ/D)Dc with ζ ∈ (0, γ). We have

λ−1
M+1rN

−γ
D ≤ (M + 1)

(
A

2a

)D/2
B−D(M+1)1/D

N−γ/D ≤ (M + 1)

(
A

2a

)D/2
N (ζ−γ)/D.

Thus, for such a choice of M , we have with probability at least 1− δ, NλM+1 = λ̃M+1(1 +
o(1)). It follows that with probability 1− δ, KL[Q||P ] ≥ NλM+1(1 + o(1)) and NλM+1 =
Ω(N1−ζ/D). Choosing γ = 1/4 and ζ = min{γ/2, Dε}, completes the proof.
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Appendix F. Effect of Jitter on Bounds

In this section, we restate and prove Proposition 34. Recall that for ε > 0, we define
Qff(ε) := KT

uf(Kuu + εI)−1Kuf.

Proposition 34 Let Lε denote the evidence lower bound computed with jitter ε ≥ 0 added
to Kuu, that is

Lε = −1

2
log det(Qff(ε) + σ2I)− 1

2
yT(Qff(ε) + σ2I)−1y − N

2
log 2π − 1

2σ2
tr(Kff −Qff(ε)).

Then Lε is monotonically decreasing in ε. Similarly if Uε denotes the upper bound Eq. (12)
computed with added jitter to Kuu, that is

Uε := −1

2
log det(Qff(ε) + σ2I)− 1

2
yT(Qff(ε) + tr(Kff −Qff(ε))I + σ2I)−1y − N

2
log 2π.

Then Uε is monotonically increasing in ε. In particular, adding jitter can only make the
upper bound on the log marginal likelihood larger and the ELBO smaller.

Proof Let 0 ≤ ε < ε′. For an arbitrary v ∈ Rn,

vT(Qff(ε)−Qff(ε′))v = (Kufv)T
(
(Kuu + εI)−1 − (Kuu + ε′I)−1

)
(Kufv) ≥ 0,

The final inequality follows from Kuu + εI ≺ Kuu + ε′I and Proposition 35. Therefore,
Qff(ε′) ≺ Qff(ε). From Proposition 35, we have

−1

2
yT(Qff(ε) + σ2I)−1y ≥ −1

2
yT(Qff(ε′) + σ2I)−1y. (39)

Let A,B arbitrary N ×N SPSD matrices with A � B � σ2I. Denote the eigenvalues of A
and B respectively as λ1(A) ≥ . . . λN (A) and λ1(B) ≥ . . . λN (B). Then,

log detA =
N∑
i=1

log λi(A)

=

N∑
i=1

log λi(B) +

n∑
i=1

log
λi(A)

λi(B)

= log detB +
N∑
i=1

log

(
1 +

λi(A)− λi(B)

λi(B)

)

≤ log detB +
N∑
i=1

λi(A)− λi(B)

λi(B)

≤ log detB +
1

σ2
tr(A−B). (40)
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The first inequality follows applying log(1 + a) ≤ a to each term in the sum. The second
inequality used that λi(B) ≥ σ2 since B � σ2I. Then,

−1

2
log det(Qff(ε) + σ2I)− 1

2σ2
tr(Kff −Qff(ε))

= −1

2
log det(Qff(ε) + σ2I)− 1

2σ2
tr(Qff(ε′)−Qff(ε))− 1

2σ2
tr(Kff −Qff(ε′))

≥ −1

2
log det(Qff(ε′) + σ2I)− 1

2σ2
tr(Kff −Qff(ε′)). (41)

where the final inequality follows from Eq. (40) with A = Qff(ε)+σ2I and B = Qff(ε′)+σ2I.
Combining Eq. (39) with Eq. (41) proves the monotonicity of the lower bound in ε. The
upper bound follows from Proposition 35 noting that in the quadratic form

Qff(ε) + (tr(Kff −Qff(ε)) + σ2)I−Qff(ε′) + (tr(Kff −Qff(ε′)) + σ2)I

= Qff(ε)−Qff(ε′) + tr(Qff(ε)−Qff(ε′))I

� 0.

Appendix G. An Alternative Ridge Leverage Sampling Initialization

Many implementations of leverage score sampling allow for adaptively selecting the number
of inducing points to achieve a desired level of accuracy. We briefly discuss the application
of Algorithm 2 in Musco and Musco (2017) to the problem of sparse variational inference
in Gaussian processes.

G.1 Effective Dimension

The number of points sampled by ridge leverage score methods to achieve a desired level
of accuracy is closely related to the effective dimension of the kernel matrix, which can
be thought of as measure of the complexity of the non-parameteric regression model. The
effective dimension is defined as the sum of the ridge leverage scores,

dωeff :=
N∑
n=1

`ω(xn) =
N∑
m=1

λ̃m

λ̃m + ω
, (42)

and depends on the choice of kernel, the distribution of the covariates and the regularization
parameter.

In order to compare such an adaptive method with the bounds discussed in Section 4,
we need to consider the typical size of the effective dimension, assuming a fixed kernel and
a random set of covariates with identical marginal distributions (or marginal distributions
satisfying the conditions in Lemma 11).

For any fixed set of covariates, we can split the sum in Eq. (42) into two parts, yielding

dωeff ≤ S +
1

ω

N∑
m=S+1

λ̃m, (43)
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where S is an arbitrary positive integer. Upper bounds on the effective dimension can be
obtained by choosing S so that the two terms on the right hand side of Eq. (43) are of the
same order of magnitude.

G.2 Adaptively Selecting the Number of Inducing Points with Leverage Scores

We consider the application of Musco and Musco (2017, Algorithm 2) to the problem of
selecting inducing inputs for sparse variational inference in GP models. This algorithm
comes with the following bounds on the quality of the resulting Nyström approximation.

Lemma 37 (Musco and Musco (2017), Theorem 7) Fix δ ∈ (0, 1
32). There exists an

algorithm with run time O(NM2) and memory complexity O(NM) that with probability
1 − 3δ returns M < 384dωeff log(dωeff/δ) columns of Kff such that the resulting Nyström ap-
proximation, Qff, satisfies

‖Kff −Qff‖op ≤ ω
where dωeff denotes the effective dimension of the Gaussian process regressor with σ2 = ω.14

We can now consider the implications of this bound on sparse variational GP regression
using Lemmas 3 and 4.

G.3 Ridge Leverage Scores and Sparse Variational Inference

We begin by considering the resulting error from employing Lemma 37 in Lemma 4. Noting
that tr(Kff −Qff) ≤ N‖Kff −Qff‖op, Lemma 4 gives us the bound

E[KL[Q||P ] |Z,X] ≤ N ‖Kff −Qff‖op
σ2

. (44)

Similarly, Lemma 3 becomes

KL[Q||P ] ≤ ‖Kff −Qff‖op

2σ2

(
N +

‖y‖22
σ2

)
.

Both of these bounds are small if ‖Kff −Qff‖op � 1/N .

For simplicity, we consider the case when y is assumed to have a conditional distribution
that agrees with the GP prior. Fix δ ∈ (0, 1/32) and γ > 0. Applying Markov’s inequality
to Eq. (44), with probability at least 1− δ,

KL[Q||P ] ≤ N ‖Kff −Qff‖op

δσ2
. (45)

We can apply the algorithm referred to in Lemma 37 with ω = σ2δγ/N , so that with
probability at least 1− 3δ a set of inducing inputs is chosen such that,

‖Kff −Qff‖op ≤ δσ2γ/N.

14. Note that Kff and Qff are both independent of the noise parameter, so there is no requirement that the
‘noise parameter’ used for initializing inducing points matches the noise parameter used in performing
regression.
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We can then apply a union bound to conclude with probability at least 1− 4δ,

KL[Q||P ] ≤ γ. (46)

By Corollary 12 and Markov’s inequality, with probability at least 1− δ,

1

ω

N∑
m=S+1

λ̃m ≤
N

δω

∞∑
m=S+1

λm

for any 1 ≤ S ≤ N . On the event where this holds and recalling we chose the parameter
ω = σ2δγ/N , Eq. (43) implies that,

dωeff ≤ S +
1

δω

N∑
m=S+1

λ̃m ≤ S +
N2γ

σ2δ2

∞∑
m=S+1

λm. (47)

We can again apply the union bound to lower bound the probability that both the
effective dimension is less that the bound in Eq. (47) and that Eq. (46) holds. This yields
the following probabilistic bounds on the quality of sparse VI in GP regression with inducing
points placed according to approximate ridge leverage scores.

Theorem 38 Fix δ ∈ (0, 1
32), γ > 0. Under the same assumptions on the covariate distri-

bution and the distribution of y as in Theorem 14 if inducing points are placed according
to Musco and Musco (2017, Algorithm 2) with ω = σ2δγ/N , then with probability 1 − 5δ,
M < 384d log(d/δ) and

KL[Q||P ] ≤ γ

where d = min
S∈N,S≤N

(
S + N2

σ2δ2γ

∑∞
m=S+1 λm

)
.

A similar argument in the case when we do not assume y is distributed according to the
prior model leads to the following result:

Theorem 39 Fix δ ∈ (0, 1
32), γ > 0. Under the same assumptions on the covariate distri-

bution and the distribution of y as in Theorem 13 if inducing points are placed according

to Musco and Musco (2017, Algorithm 2) with ω = 2σ2δγ
N(1+R/σ2)

then with probability 1− 5δ,

M < 384d′ log(d′/δ) and

KL[Q||P ] ≤ γ

where d′ = min
S∈N,S≤N

(
S + N2(1+R2/σ2)

2σ2δγ

∑∞
m=S+1 λm

)
.

Note that while the resulting bounds on M depend on the kernel and covariate distribution,
the quality of the resulting approximation in both Theorems 38 and 39 does not.

The bounds implied by these results for various kernels are given in Table 3. Note that
the asymptotic rates implied by both Theorems 38 and 39 are the same. This is because,
unlike in the case of the M -DPP initialization in which the trace is bounded and this is
used as an upper bound on the operator norm, the operator norm is bounded directly.
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Kernel Input Distribution M

SE-Kernel Compact support O((logN)D log log(N))
SE-Kernel Gaussian O((logN)D log log(N))

Matérn ν Compact support O(N
2D

2ν+D logN)

Table 3: Bounds on the number of inducing points used in Theorems 38 and 39.
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Joaquin Quiñonero-Candela and Carl E. Rasmussen. A unifying view of sparse approximate
Gaussian process regression. Journal of Machine Learning Research (JMLR), 6((12)):
1939–1959, 2005.

Carl E. Rasmussen and Christopher K.I. Williams. Gaussian Processes for Machine Learn-
ing. MIT Press, 2006.

Alessandro Rudi, Raffaello Camoriano, and Lorenzo Rosasco. Less is more: Nyström com-
putational regularization. In Advances in Neural Information Processing Systems (NIPS),
pages 1657–1665, 2015.

Matthias W. Seeger, Christopher K.I. Williams, and Neil D. Lawrence. Fast forward se-
lection to speed up sparse Gaussian process regression. In Artificial Intelligence and
Statistics (AISTATS), pages 205–212, 2003.

Matthias W. Seeger, Sham M. Kakade, and Dean P. Foster. Information consistency of
nonparametric Gaussian process methods. IEEE Transactions on Information Theory,
54(5):2376–2382, 2008.

62



Convergence of Sparse VI in GP Regression

John Shawe-Taylor, Christopher K.I. Williams, Nello Cristianini, and Jaz Kandola. On the
eigenspectrum of the Gram matrix and the generalization error of kernel-PCA. IEEE
Transactions on Information Theory, 51(7):2510–2522, 2005.

Alexander J. Smola and Bernard Schölkopf. Sparse greedy matrix approximation for ma-
chine learning. In International Conference on Machine Learning (ICML), pages 911–918,
2000.

Edward Snelson and Zoubin Ghahramani. Sparse Gaussian processes using pseudo-inputs.
In Advances in Neural Information Processing Systems (NIPS), pages 1257–1264, 2006.
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Yu Feng, Eric W. Moore, Jake Vand erPlas, Denis Laxalde, Josef Perktold, Robert Cim-
rman, Ian Henriksen, E. A. Quintero, Charles R Harris, Anne M. Archibald, Antônio H.
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