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Abstract Assessing the effect of a health-oriented intervention by traditional epidemi-
ological methods is commonly based only on population segments that use healthcare
services. Here we introduce a complementary framework for evaluating the impact of
a targeted intervention, such as a vaccination campaign against an infectious disease,
through a statistical analysis of user-generated content submitted on web platforms.
Using supervised learning, we derive a nonlinear regression model for estimating the
prevalence of a health event in a population from Internet data. This model is applied
to identify control location groups that correlate historically with the areas, where a
specific intervention campaign has taken place. We then determine the impact of the
intervention by inferring a projection of the disease rates that could have emerged
in the absence of a campaign. Our case study focuses on the influenza vaccination
program that was launched in England during the 2013/14 season, and our observa-
tions consist of millions of geo-located search queries to the Bing search engine and
posts on Twitter. The impact estimates derived from the application of the proposed
statistical framework support conventional assessments of the campaign.
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1 Introduction

Infectious diseases are a major concern for public health and a significant cause of death
worldwide (Binder et al. 1999; Morens et al. 2004; Jones et al. 2008). Various health
interventions, such as improved sanitation, clean water and immunization programs,
assist in reducing the risk of infection (Cohen 2000). To monitor infectious diseases as
well as evaluate the impact of control and prevention programs, health organizations
have established a number of surveillance systems. Typically, these schemes, apart
from requiring an established health system, only cover cases that result in healthcare
service utilization. Therefore, they are not always able to capture the prevalence of a
disease in the general population, where it is likely to be more common (Reed et al.
2009; Briand et al. 2011).

Recent research efforts have proposed various ways for taking advantage of online
information to gain a better understanding of offline, real-world situations. Particular
interest has been drawn on the modeling of user-generated web content, either in
the form of social media text snippets or search engine query logs. Numerous works
have provided statistical proof for the predictive capabilities of these resources with
applications spreading across the domains of finance (Bollen et al. 2011), politics
(O’Connor et al. 2010; Lampos et al. 2013) and healthcare (Ginsberg et al. 2009;
Lampos and Cristianini 2010; Culotta 2010). Focusing on the domain of health, the
development of models for nowcasting infectious diseases, such as influenza-like
illness (ILI),! has been a central theme (Milinovich et al. 2014). Initial indications
that content from Yahoo’s (Polgreen et al. 2008) or Google’s (Ginsberg et al. 2009)
search engine are good ILI indicators, were followed by a series of approaches using
the microblogging platform of Twitter as an alternative, publicly available source
(Lampos et al. 2010; Signorini et al. 2011; Lamb et al. 2013).

Tracking the prevalence of an infectious disease from Internet activities establishes a
complementary and perhaps more sensitive sensor than doctor visits or hospitalizations
because it provides access to the bottom of the disease pyramid, i.e., potential cases of
infection many of whom may not use the healthcare system. Online data sources do
have disadvantages, including noise and ambiguity, and respond not just to changes
in disease prevalence, but also to other factors, especially media coverage (Cook
etal. 2011; Lazer et al. 2014). Nevertheless, the learning approaches that convert this
content to numeric indications about the rate of a disease aim to eliminate most of the
aforementioned biases.

The United Kingdom (UK) in an effort to reduce the spread of influenza in the
general population has introduced nation-wide interventions in the form of vaccina-
tions. Recognizing that children are key factors in the transmission of the influenza
virus (Petrie et al. 2013), a pilot live attenuated influenza vaccine (LAIV) program
has been launched in seven geographically discrete areas in England (Table 1) during
the 2013/14 influenza season, with LAIV offered to school children aged from 4 to
11 years; this was in addition to offering vaccinations to all healthy children that were

VILris typically defined as the presence of high fever together with cough or sore throat (Monto et al.
2000; Boivin et al. 2000).
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2 or 3 years old. A report, led by one of our co-authors, quantified the impact of the
school children LAIV campaign on a range of influenza indicators in pilot compared
to non-pilot areas through traditional influenza surveillance schemes (Pebody et al.
2014). However, the sparse coverage of the surveillance system as well as the biases
in the population that uses healthcare services, resulted into partially conclusive and
not statistically significant outcomes.

In this work, we extend previous ILI modeling approaches from Internet content and
propose a statistical framework for assessing the impact of a health intervention. To
validate our methodology, we used UK’s 2013/14 pilot LAIV campaign as a case study.
Our experimental setup involved the processing of millions of Twitter postings and
Bing search queries geo-located in the target vaccinated locations, as well as a broader
set of control locations across England. Firstly, we assessed the predictive capacity of
various text regression models for inferring ILI rates, proposing a nonlinear method
for performing this task based on the framework of Gaussian Processes (Rasmussen
and Nickisch 2010), which improved predictions on our data set by a degree greater
than 22 % in terms of Mean Absolute Error (MAE) as compared to linear regularized
regression methods such as the elastic-net (Zou and Hastie 2005). Then, we performed
a statistical analysis, to evaluate the impact of the pilot LAIV program. The extracted
impact estimates were in line with Public Health England’s (PHE)? findings (Pebody
et al. 2014), providing both supplementary support for the success of the intervention,
and validatory evidence for our methodology.

2 Data sources

We used two user-generated data sources, namely search query logs from Microsoft’s
Bing search engine and Twitter data. In the following paragraphs, we describe the
process for extracting textual features from queries or tweets, as well as the additional
components of the applied experimental process.

2.1 Feature extraction

We manually crafted a list of 36 textual markers (or n-grams) related to or expressing
symptoms of ILI by browsing through related web pages (on Wikipedia or health-
oriented websites). Then, using these markers as seeds, we extracted a set of frequent,
co-occurring n-grams with n < 4, in a Twitter corpus of approx. 30 million tweets pub-
lished between February and March 2014 and geo-located in the UK. This expanded
the list of markers to a set of M = 205 n-grams (see Supplementary Material,
Table S1), which formed the feature space in our experimental process. Overall the
number of n-grams does not reach the quantity explored in previous studies (Ginsberg
et al. 2009; Lampos and Cristianini 2012), although this choice was motivated by
the fact that a small set of keywords is adequate for achieving a good predictive per-

2 PHE is an executive agency for the Department of Health in England.
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formance when modeling ILI from user-generated content published online (Culotta
2013).

2.2 Geographic areas of interest

We analyzed data that was either geo-located in England as a whole or in specific
areas within England. Table 1 lists all the specific locations of interest, dividing them
into two categories: the 7 vaccinated areas (v;) where the LAIV program was applied,
and the selected 12 control areas (c;) which represent urban centers in England, with
considerable population figures, that were distant from all vaccinated areas, and were
spread across the geography of the country, to the extent possible. Each area is specified

Table 1 Areas participating in the LAIV program (v) and control areas (c¢) with their respective identifiers,
population figures and geographical bounding box coordinates

Areas id Population Swa NEP

Bury V] 186,527 —2.352,53.550 —2.243,53.645
Cumbria v 498,070 —3.640, 54.042 —2.159,55.189
Gateshead U3 199,998 —1.662,54.914 —1.516,54.971
Leicester City Vg NA® —1.216, 52.581 —1.046, 52.692
East Leicestershire V4p 661,575d —0.891, 52.392 —0.664, 52.978
Rutland Ve 37,606 —0.822, 52.525 —0.428, 52.760
London, Havering vs 242,080 0.138,51.487 0.334,51.632
London, Newham ve 318,227 —0.021, 51.498 0.098, 51.564
South East Essex v7 175,798¢ 0.487, 51.494 1.032, 51.760
Brighton c 278,112f —0.174, 50.807 —0.087, 50.870
Bristol ) 437,492 —3.118,51.342 —2.510, 51.544
Cambridge c3 126,480 0.0774, 52.159 0.191, 52.238
Exeter c4 121,800 —3.687, 50.566 —3.367, 50.886
Leeds cs 761,481 —1.800, 53.698 —1.290, 53.946
Liverpool c6 470,780 —3.019,53.312 —2.818,53.475
Norwich c7 135,893 1.204, 52.555 1.541, 52.685
Nottingham cg 310,837 —1.247,52.889 —1.086, 53.019
Plymouth c9 259,175 —4.303,50.211 —3.983,50.531
Sheffield c10 560,085 —1.801, 53.305 —1.325,53.503
Southampton c1l 242,141 —1.564, 50.743 —1.244,51.063
York c12 202,433 —1.242,53.799 —0.922,54.119

4 Longitude and latitude of the South-West edge of the bounding box

b Longitude and latitude of the North-East edge of the bounding box

¢ Figures for Leicester city alone, which is part of Leicestershire, were not included in (Office for National
Statistics, Great Britain 2014a)

d This is a figure for the entire Leicestershire

€ This is a figure for Southend-on-Sea

f Includes the town of Hove
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1438 V. Lampos et al.

by a geographical bounding box defined by the longitude and latitude of its South-West
and North-East edge points.

2.3 User-generated web content

To perform a more rigorous experimental approach, distinct data sets from two different
web sources have been compiled. The first (7°) consists of all Twitter posts (tweets)
with geo-location enabled and pointing to the region of England from 02/05/2011 to
13/04/2014, i.e., 154 weeks in total. The total number of tweets involved is approx.
308 million, whereas the cumulative appearances of ILI-related n-grams is approx.
2.2 million. The vaccinated and control areas account for 5.8 and 12.6 % of the
entire content respectively. The second data set (53) consists of search queries on
Microsoft’s web search engine, Bing, from 31/12/2012 to 13/04/2014 (67 weeks in
total), geo-located in England. This data set has smaller temporal coverage as compared
to Twitter data due to limitations in acquiring past search query logs. The number
of queries in B is significantly larger than the number of tweets in 7°; 3.75 % of
the queries were geo-located in vaccinated areas, 12.53 % in control areas, and flu
related n-grams appeared in approx. 7.7 million queries. For all the considered n-
grams (Supplementary Material, Table S1) we extracted their weekly frequency in
England as well as in the designated areas of interest. We performed a more relaxed
search, looking for content (tweets or search queries) that contains all the 1-gram
blocks of an n-gram.

2.4 Official health reports

For the period covering data set 7, i.e., 02/05/2011 to 13/04/2014, PHE provided ILI
estimates from patient data gathered by the Royal College of General Practitioners
(RCGP)* in the UK. The estimates represent the number of GP consultations identified
as ILI per 100 people for the geographical region of England and their temporal
resolution is weekly (Fig. 1).

3 Estimating the impact of a healthcare intervention

The proposed methodology consists of two main steps: (a) the modeling and prediction
of a disease rate proxy from user-generated content as a regression problem, and (b)
the assessment of the health campaign using a statistical scheme that incorporates
the regression models for the disease. Among well studied linear functions for text
regression, we also propose a nonlinear technique, where different n-gram categories
(sets of keywords of size n) are captured by a different kernel function, as a better

3 The exact number cannot be disclosed as this is sensitive product information.

4 RCGP has an established sentinel network of general practitioners in England and together with
PHE publishes ILI rates on a weekly basis. Summaries of surveillance reports can be found at
http://www.gov.uk/sources-of-uk-flu-data-influenza-surveillance-in-the-uk (accessed May 31, 2015).

@ Springer


http://www.gov.uk/sources-of-uk-flu-data-influenza-surveillance-in-the-uk

Assessing the impact of a health intervention via Internet content 1439

—e— PHE/RCGP [l LAIV Post LAIV
2 o4t A4 " >
g. <— 5 >
b <« My ——>
o
o 003f :
o
e
S
[}
2 002 1
o <— At —>
- v
= 001f 1
0 ‘ ‘ m

2012 2013 2014

Fig. 1 Weekly ILI rates for England published by RCGP/PHE, covering three consecutive flu seasons
(2011712, 2012/13 and 2013/14). At labels denote the span of the time periods used in our experimental
process. The end date for all periods is 13/04/2014, whereas At; commences on 02/05/2011 (154 weeks),
Aty on 04/06/2012 (97 weeks) and Atz on 31/12/2012 (67 weeks). Aty represents the effective time period
of the LAIV program including a post-vaccination interval, up until the end of the flu season (green color);
blue color is used to denote the actual vaccination period (September 2013 to January 2014) (Color figure
online)

performing alternative (see Sects. 3.1 and 3.2). The statistical framework for computing
the impact of the intervention program is based on a method for evaluating the impact
of printed advertisements (Lambert and Pregibon 2008); the method is described in
detail in Sect. 3.3.

3.1 Linear regression models for disease rate prediction

In this supervised learning setting, our observations X consist of n-gram frequencies
across time and the responses y are formed by official health reports, both focused on
a particular geographical region. Using N weekly time intervals and the M n-gram
features, X € R¥*M and y e RM. Each row of X holds the normalized n-gram
frequencies for a week in our data set. Normalization is performed by dividing the
number of n-gram occurrences with the total number of tweets or search queries in
the corpus for that week. Previous work performing text regression on social media
content suggested the use of regularized linear regression schemes (Lampos and Cris-
tianini 2010; Lampos et al. 2010). Here, we employ two well-studied regularization
techniques, namely ridge regression (Hoerl and Kennard 1970) and the elastic-net
(Zou and Hastie 2005), to obtain baseline performance rates.

The core element of regularized regression schemes is the minimization of the sum
of squared errors between a linear transformation of the observations and the respective
responses. In its simplest form, this is expressed by Ordinary Least Squares (OLS):

N

argminZ(XiW+,3—yi)2, (D

wh iz

where w € RM and 8 € R denote the regression weights and intercept respectively,
and y; € R is the value of the response variable y for a week i. The regularization
of w assists in resolving singularities which lead to ill-posed solutions when applying
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OLS. Broadly applied solutions suggest the penalization of either the L2 norm (ridge
regression) or the L1 norm (lasso) of w. Ridge regression (Hoerl and Kennard 1970)
is formulated as

N M
argmin Z xw+B—y)+«k Z w? , (2)
w i=1 j=1

where k € R denotes the ridge regression’s regularization term. Lasso (Tibshirani
1996) encourages the derivation of a sparse solution, i.e., a w with a number of zero
weights, thereby performing feature selection. On a number of occasions, this sparse
solution offers a better predictive accuracy than ridge regression (Hastie et al. 2009).
However, models based on lasso are shown to be inconsistent in comparison to the
true model, when collinear predictors are present in the data (Zhao and Yu 2006).
Collinearities are expected in our task, since predictors are formed by time series of n-
gram frequencies and semantically related n-grams will exhibit a degree of correlation.
This is resolved by the elastic-net (Zou and Hastie 2005), an optimization function
which merges L1 and L2 norm regularization, maintaining both positive properties of
lasso and ridge regression. It is formulated as

N M M
argmin [ " (Gw+ B —y)> + 11 D lwjl+ 12 D> w7 |, 3)
w i=1 j=1 j=1

where A1, A, € RT are the L1 and L2 norm regularization parameters respectively.
The Least Angle Regression (LAR) algorithm (Efron et al. 2004) provides an efficient
way to compute an optimal lasso or elastic-net solution by exploring the entire reg-
ularization path, i.e., all the candidate values for the regularization parameter A in
Eq. 3. Parameter X, is estimated as a function of A1, where A, = A1(1 —a)/(2a) (Zou
and Hastie 2005); we set @ = 0.5 in our experiments, a common setting that obtains
a 66.6-33.3 % regularization balance between the L1 and L2 norms respectively.

3.2 Disease rate prediction using Gaussian processes

While the majority of methods for modeling infectious diseases are based on linear
solvers (Ginsberg et al. 2009; Lampos et al. 2010; Culotta 2010), there is some evidence
that nonlinear methods may be more suitable, especially when features are based
on different n-gram lengths (Lampos 2012). Furthermore, recent studies in natural
language processing (NLP) indicate that the usage of nonlinear methods, such as
Gaussian Processes (GPs), in machine translation or text regression tasks improves
performance, especially in cases where the feature space is not large (Lampos et al.
2014; Cohn et al. 2014). Motivated by these findings, we also considered a nonlinear
model for disease prediction formed by a composite GP.

GPs can be defined as sets of random variables, any finite number of which have a
multivariate Gaussian distribution (Rasmussen and Williams 2006). In GP regression,
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for the inputs x, X' € RM (both expressing rows of the observation matrix X) we want
to learn a function f: RY — R that is drawn from a G prior

f&) ~ GP (nx), k(x,x)), “)

where w(x) and k(x, x’) denote the mean and covariance (or kernel) functions respec-
tively; in our experiments we set u(x) = 0. Evidently, the GP kernel function is
applied on pairs of input (x, x"). The aim is to construct a GP that will apply a smooth
function on the input space, based on the assumption that small changes in the response
variable should also reflect on small changes in the observed term frequencies. A com-
mon covariance function that accommodates this is the isotropic Squared Exponential
(SE), also known as the radial basis function or exponentiated quadratic kernel, and
defined as

lIx —x'II3
ksg (x, X) = o exp (_Z—Zzz , (6))

where o2 describes the overall level of variance and ¢ is referred to as the characteristic
length-scale parameter. Note that £ is inversely proportional to the predictive relevancy
of the feature category on which it is applied (high values of ¢ indicate a low degree of
relevance), and that olisa scaling factor. An infinite sum of SE kernels with different
length-scales results to another well studied covariance function, the rational quadratic
(RQ) kernel (Rasmussen and Nickisch 2010). It is defined as

—
Ix —x'||3
kRQ(X, x) =o? (1 + sz , (6)

where « is a parameter that determines the relative weighting between small and large-
scale variations of input pairs. The RQ kernel can be used to model functions that are
expected to vary smoothly across many length-scales. Based on empirical evidence,
this kernel was shown to be more suitable for our prediction task.

In the GP framework predictions are conducted using Bayesian® integration, i.e.,

POulxe, O) = /f pOlxe HP(FIO), ™

where y, denotes the response variable, O the training set and X, the current observa-
tion. Model training is performed by maximizing the log marginal likelihood p(y|O)
with respect to the hyper-parameters using gradient ascent.

Based on the property that the sum of covariance functions is also a valid covariance
function (Rasmussen and Nickisch 2010), we model the different n-gram categories
(1-grams, 2-grams, etc.) with a different RQ kernel. The reasoning behind this is the

5 Note that it is not strictly Bayesian in the sense that no prior is assumed for each one of the hyper-
parameters in the GP function.
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assumption that different n-gram categories may have varied usage patterns, requir-
ing different parametrization for a proper modeling. Also as n increases, the n-gram
categories are expected to have an increasing semantic value. The final covariance
function, therefore, becomes

C
k(x,x') = (Z krQ (@ g;)) +kN(x, X)), ®)

n=1

where g, is used to express the features of each n-gram category, i.e., x = {g1, g2,
23, g4}, C is equal to the number of n-gram categories (in our experiments, C = 4)
and kN(x, X') = O'I%I x §8(x, x") models noise (§ being a Kronecker delta function).
The summation of RQ kernels which are based on different sets of features can be
seen as an exploration of the first order interactions of these feature families; more
elaborate combinations of features could be studied by applying different types of
covariance functions (e.g., Matérn 1986) or an additive kernel (Duvenaud et al. 2011).
An extended examination of these and other models is beyond the scope of this work.

Denoting the disease rate time series asy = (yi, ..., Yn), the GP regression objec-
tive is defined by the minimization of the following negative log-marginal likelihood
function

argmin (0= Ky — ) + log K]), ©

01,00, L1, 0c,a .., ac,oN

where K holds the covariance function evaluations for all pairs of inputs, i.e., (K); ; =
k(x;,x;),and u = (u(X1), ..., u(Xyn)). Based on a new observation X, a prediction
is conducted by computing the mean value of the posterior predictive distribution,
E[y«ly, O, x.] (Rasmussen and Williams 2006).

3.3 Intervention impact assessment

Conventional epidemiology typically assesses the impact of a healthcare intervention,
such as a vaccination program, by comparing population disease rates in the affected
(target) areas to the ones in non participating (control) areas (Pebody et al. 2014).
However, a direct comparison of target and control areas may not always be applicable
as comparable locations would need to be represented by very similar properties, such
as geography, demographics and healthcare coverage. Identifying and quantifying such
underlying characteristics is not something that is always possible or can be resolved
in a straightforward manner. We, therefore, determine the control areas empirically,
but in an automatic manner, as discussed below.

Firstly, we compute disease estimates (q) for all areas using our input observations
(social media and search query data) and a text regression model. Ideally, for a target
area v we wish to compare the disease rates during (and slightly after) the intervention
program (q,) with disease rates that would have occurred, had the program not taken
place (q;). Of course, the latter information, q;, cannot be observed, only estimated. To
do so, we adopt a methodology proposed for addressing a related task, i.e., measuring
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the effectiveness of offline (printed) advertisements using online information (Lambert
and Pregibon 2008).

Consider a situation where, prior to the commencement of the intervention program,
there exists a strong linear correlation between the estimated disease rates of areas that
participate in the program (v) and of areas that do not (c). Then, we can learn a linear
model that estimates the disease rates in v based on the disease rates in c. Hypothesizing
that the geographical heterogeneity encapsulated in this relationship does not change
during and after the campaign, we can subsequently use this model to estimate disease
rates in the affected areas in the absence of an intervention (q).

More formally, we first test whether the inferred disease rates in a control location ¢
for a period of T = {¢y, .., ty} days before the beginning of the intervention (q;) have
a strong Pearson correlation, r(q;, q;), with the respective inferred rates in a target
area v (q). If this is true, then we can learn a linear function f(w, 8) : R — R that
will map q to q}:

N
argnﬂnnZ(quww —q!)’, (10)
w

i=1

where ¢y and g; denote weekly values for q; and q; respectively. By applying the
previously learned function on q, we can predict q}; using

q, =q:w+b, (1)

where q denotes the disease rates in the control areas during the intervention program
and b is a column vector with N replications of the bias term (f).

Two metrics are used to quantify the difference between the actual estimated disease
rates (q,) and the projected ones had the campaign not taken place (q;). The first metric,
8y, expresses the absolute difference in their mean values

81) =qu_q?;7 (12)
and the second one, 6,, measures their relative difference

= %
gy =2 "D (13)
qy
We refer to 6, as the impact percentage of the intervention. A successful campaign is
expected to register significantly negative values for §, and 6,,.

Confidence intervals (CIs) for these metrics can be derived via bootstrap sampling
(Efron and Tibshirani 1994). By sampling with replacement the regression’s residuals
qF — q’ in Eq. 10 (where q is the fit of the training data q7) and then adding them
back to g7, we create bootstrapped estimates for the mapping function f (w, B). We
additionally sample with replacement q, and q., before applying the bootstrapped
function on them. This process is repeated 100,000 times and an equivalent number
of estimates for 8, and 6, is computed. The Cls are derived by the .025 and .975
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quantiles in the distribution of those estimates. Provided that the distribution of the
bootstrap estimates is unimodal and symmetric, we assess an outcome as statistically
significant, if its absolute value is higher than two standard deviations of the bootstrap
estimates (similarly to Lambert and Pregibon 2008).

4 Results

In the following sections, we apply the previously described framework to assess the
UK’s pilot school children LAIV campaign based on user-generated Internet data.
First, we evaluate the aforementioned regression methods that provide a proxy for
ILI via the modeling of Bing and Twitter content geo-located in England. As ‘ground
truth’ in these experiments, we use ILI rates (see Fig. 1) published by the RCGP/PHE.
We then use the best performing regression model in the framework for estimating the
impact of the vaccination campaign.

4.1 Predictive performance for ILI inference methods

We have applied a set of inference methods, starting from simple baselines (ridge
regression) to more advanced regularized regression models (elastic-net), including
a nonlinear function based on a composite GP. We evaluate our results by perform-
ing a stratified 10-fold cross validation, creating folds that maintain a similar sample
distribution in the relatively short time-span covered by our input observations. To
allow a better interpretation of the results, we used two standard performance metrics,
the Pearson correlation coefficient (), which is not always indicative of the predic-
tion accuracy, and the MAE between predictions (§) and ‘ground truth’ (y). For N
predictions of a single fold, MAE is defined as

MAE y y (14)

uMz

being expressed in the same units as the predictions. Then, the average r and MAE on
the 10 folds are computed together with their corresponding standard deviations.

Given that the extracted tweets had a more extended temporal coverage compared
to the search queries, we have performed experiments on the following data sets: (a)
Twitter data for the period At = 154 weeks, from 02/05/2011 to 13/04/2014, a time
period that encompasses three influenza seasons, (b) search query log data from Bing
for the period Atz = 67 weeks, from 31/12/2012 to 13/04/2014, and (c) Twitter data
for the same period Atz. All data sets are considering content geo-located in England
and the respective time periods are depicted on Fig. 1. The latter data set (c) permits
a better comparison between Twitter and Bing data.

Table 2 enumerates the derived performance figures. For all three data sets, the GP-
kernel method performs best. Due to its larger time span, the experiment on Twitter
data published during At; provides a better picture for assessing the learning per-
formance of each of the applied algorithms. There, the two dominant models, i.e.,
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Table2 Performance of ILI estimators for England under all investigated models and data sets (7 : Twitter,
B: Bing) based on a 10-fold cross validation

Ridge regression Elastic-Net GP-kernel

w(r) w(MAE) x 103 u(r) w(MAE) x 103 u(r) w(MAE) x 103
T, At 640 (.112) 3.074 (.497) 718 (206) 2.828 (.809)*  .845(.062) 2.196 (477)*
T, Aty 698 (.181)  4.084 (.879) 744 (137) 3198 (137)* 924 (.053)  1.999 (.763)*F

B, Aty .814 (.103) 2.963 (.638) 867 (.067)  2.564 (.677)* 952 (.041)  1.598 (.504)* T

u(r) and w(MAE) denote the average Pearson correlation and average MAE (the latter is multiplied by
10%) between predictions and response data in the 10 folds; parentheses contain the standard deviation
of the mean. Row result pairs with an asterisk (*) have a statistically significant difference in their mean
performance, whereas column result pairs with a dagger (1) do not; bold font indicates the best performing
combination of model and data set

the elastic-net and the GP-kernel, have a statistically significant difference in their
mean performance, as indicated by a two-sample ¢ test (p = .0471); this statistically
significant difference is replicated in all experiments (p < .005) indicating that the
GP model handles the ILI inference task better. Bing data provide a better inference
performance as compared to Twitter data from the same time period (u(r) = .952,
w(MAE) = 1.598 x 1073), but in that case the difference in performance between
the two sources is not statistically significant at the 5 % level (p = .1876). The use-
fulness of incorporating different n-gram categories and not just 1-grams has also
been empirically verified (see Appendix 2, Table 5). Experiments, where Bing and
Twitter data were combined (by feature aggregation or different kernels), indicated
a small performance drop. However, this cannot form a generalized conclusion as
it may be a side effect of the data properties (format, time-span) we were able to
work with. We leave the exploration of more advanced data combinations for future
work.

4.2 Assessing the impact of the LAIV campaign

Taking into account the results presented in the previous section, we rely on the best
performing GP-kernel model for estimating an ILI proxy. For both Twitter and Bing,
we have used ILI models trained on all data geo-located in England (time frames At
and Atz apply respectively). After learning a generic model for England, we then use
it to infer ILI rates in specific locations.®

To assess the impact of the LAIV campaign, we first need to identify control areas
with estimated ILI rates that are strongly correlated to rates in the target vaccinated
locations before the start of the LAIV program (Table 1 lists all the considered areas).
As the strains of influenza virus may vary between distant time periods (Smith et al.
2004), invalidating our hypothesis for geographical homogeneity across the consid-
ered flu seasons, we look for correlated areas in a pre-vaccination period that includes
the previous flu season only (2012/2013). For Twitter data, this is from June, 2012 to

6 This decision is also enforced by the lack of ground truth for specific locations.
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August, 2013 (all inclusive), whereas for Bing data, given their smaller temporal cov-
erage, the period was from January to August, 2013 (all inclusive). To determine
the best control areas, an exhaustive search is performed comparing the correla-
tion between vaccinated and control areas, for all individual areas and supersets of
them.

Table 3 presents results of location pairs with an ILI proxy rate correlation of
> .60 during the pre-vaccination period, for which we have computed statistically
significant impact estimates (8, and 6,), together with bootstrap confidence intervals
(see Appendix 2, Table 6 for all the results, including statistical significance metrics).
The vaccinated areas or supersets of them include the London borough of Newham
(vg), Cumbria (vy), Gateshead (v3), both London boroughs (Havering and Newham
— vs, vg) as well as a joint representation of all areas (v; — v7). The best correlations
between vaccinated and control areas we were able to discover were: a) r = .866
(p < .001) for all vaccinated locations based on the Bing data, and b) » = .861
(p < .001) again for all vaccinated areas, but based on Twitter data. Note that in these
two cases the optimal controls differed per data set, but had a substantial intersection
of areas (c; — c¢3, cg, 7).

Figure 2 depicts the linear relationships between the six most correlated location
pairs of Table 3. To ease interpretation, the range of the axes has been normalized
from O to 1. Red dots denote data pairs prior to the vaccination program and blue
crosses denote pairs during and after the vaccination period (from October 2013 up
until the end of the 2013/14 flu season, i.e., 13/04/2014). We observe that there is a
linear, occasionally noisy, relationship between pairs of points prior to the vaccination,
and between pairs of points during and after the vaccination. The slope of the best fit
line is different for the two time periods. In particular, the slope during and after the
vaccination period is consistently less than the slope before the vaccination, indicating
that ILI rates in the target regions (y-axis) have reduced in comparison with the control
regions (x-axis) during and after the vaccination.

The linear mappings between control and vaccinated areas before the vaccination
are used to project ILI rates in the vaccinated areas during and slightly after the
LAIV program. Figure 3 depicts these estimates (same layout as in Fig. 2), showing a
comparative plot of the proxy ILI rates (estimated using Twitter or Bing data) versus
the projected ones; to allow for a better visual comparison, a smoothed time series is
also displayed (3-point moving average). Referring to the moving average curves, we
observe that it is almost always true that the projected ILI rates estimated from the
control areas are higher than the proxy ILI rates estimated directly from Twitter or
Bing. This indicates that the primary school children vaccination program may have
assisted in the reduction of ILI in the pilot areas.

The time period used for evaluating the LAIV program includes the weeks starting
from 30/09/2013 and ending at 13/04/2014 (28 weeks in total), i.e., the time frame
covering the actual campaign (up to January, 2014) plus the weeks up until the end
of the flu season (see Fig. 1). The bootstrap estimates for both impact metrics (8, and
6;) provide confidence intervals as well as a measure for testing the statistical signif-
icance of an outcome. Given that the distribution of the bootstrap estimates appears
to be unimodal and symmetric (see Appendix 2, Fig. 4), an outcome is considered as
statistically significant, if it is smaller than two standard deviations of the bootstrap
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® vaccinated-control areas ILI pairs during the pre-vaccination period X during/after LAIV

]

ILI rates in vaccinated areas

0 0.25 0.5 0.75 10 0.25 0.5 0.75 1

ILI rates in control areas
Fig.2 Linear relationship between the ILI rates in vaccinated areas and their respective controls during the
pre-vaccination period (red dots) and during the LAIV program up until the end of the 2013/14 flu season
(blue crosses). Axes are normalized from O to 1 to assist a better visualization across the cases and data sets;
the red-solid and blue-dashed lines denote the least squares fits for the corresponding location pairs before
and during the LAIV program respectively. a All vaccinated areas with controls ¢; — ¢3, ¢5 — ¢g and c1q
(7). b London areas with controls ¢| — ¢4, ¢g, ¢7 and c12 (7). ¢ Cumbria with controls ¢y, ¢3, ¢4, ¢7 — c9
and cy1 (7). d London borough of Newham with controls ¢y, ¢3, ¢4 and cg (7). e All vaccinated areas
with controls ¢y, ¢3, c4 — ¢7 and c¢11 (B3). f London areas with controls ¢4 — ¢7 and ¢11 (B) (Color figure
online)

sample. The statistically significant impact estimates (Table 3) indicate a reduction
of ILI rates, with impact percentages ranging from —21.06 % to —32.77 %. Interest-
ingly, the estimated impact for the London areas is in a similar range for both Bing
and Twitter data (—28.37 % to —30.45 %).

4.3 Sensitivity of impact estimates

Our analysis so far has been based on the linear relationship between vaccinated loca-
tions and only the top-correlated set of controls. To assess the sensitivity of our results
to the choice of control regions, we repeated each impact estimation experiment for
all control regions (sets of c¢; through c2) found to have a correlation score (with a
target area) greater or equal to 95 % of the best correlation. In the case where the
number of controls exceeded 100, we used the top-100 correlated controls. Consider-
ing only statistically significant results, we computed the mean §, and 6, (and their
corresponding standard deviations) on the outcomes for all the applicable controls. We
also measured the percentage of difference in 6, (A6,) compared to the most highly
correlated control (reported in Table 3) and used it as our sensitivity metric. Table 4
enumerates the derived averaged impact and sensitivity estimates, together with the
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Fig. 3 Modeled ILI rates inferred via user-generated content (qy, red dots) in comparison with projected
ILI rates (qj, black squares) during the LAIV program and up until the end of the influenza season. The
projection represents an estimation of the ILI rates that would have appeared, had the LAIV program not
taken place. The solid lines (3-point moving average) represent the general trends of the actual data points
(dashed lines) to allow for a better visual comparison. a All vaccinated areas (7). b London areas (7).
¢ Cumbria (7). d London borough of Newham (7). e All vaccinated areas (53). f London areas (53) (Color
figure online)

number of applicable controls per case. Generally, we observe that results stemming
from Twitter data are less sensitive (0.10-13.7 %) to changes in control regions as
compared to Bing data (10.3—40.3 %). The most consistent estimate (from Table 3)
is the one indicating a —32.77 % impact on the vaccinated areas as a whole based on
Twitter data, with A8, equal to just 0.1 %.

5 Related work

User-generated web content has been used to model infectious diseases, such as
influenza-like illness (Milinovich et al. 2014). Coined as “infodemiology”’ (Eysenbach
2006), this research paradigm has been first applied on queries to the Yahoo engine
(Polgreen et al. 2008). It became broadly known, after the launch of the Google Flu
Trends (GFT) platform (Ginsberg et al. 2009). Both modeling attempts used simple
variations of linear regression between the frequency of specific keywords (e.g., ‘flu’)
or complete search queries (e.g., ‘how to reduce fever’) and ILI rates reported by
syndromic surveillance. In the latter case, the feature selection process, i.e., deciding
which queries to include in the predictive model, was based on a correlation analy-
sis between query frequency and published ILI rates (Ginsberg et al. 2009). However,
GFT has been criticized as in several occasions its publicly available outputs exhibited
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Table 4 Sensitivity assessment of LAIV campaign’s impact estimates (cases are aligned with Table 3)

Data set Targets # Controls w(rv,c)) n(Sy) X 103 (@) (%) ABy (%)
T all 100 .841 (0.007) —2.506 (0.234) —32.740 (2.066) 0.10
T s, Vg 79 703 (0.011) —1.532(0.148) —27.918 (1.955) 8.32
T v 8 744 (0.015) —1.236 (0.111) —21.793 (1.516) 3.48
T v 32 705 (0.013) —1.340 (0.218) —26.277 (3.149) 13.66
B all 46 .854 (0.003) —1.382 (0.369) —16.417 (3.590) 24.36
B s, Vg 100 .841 (0.002) —1.448 (0.212) —16.899 (1.827)  40.44
B v3 2 .607 (0.016) —3.229 (0.719) —27.120 (4.421) 10.34

The mean values of the impact metrics using Twitter (7°) or Bing (13) data are computed using the top
hundred controls with a linear correlation greater or equal to 95 % of the best correlation. Controls with non
statistically significant estimates have been filtered out. Our sensitivity metric, A6y, denotes the percentage
of difference between i (6, ) and the original 6, estimate (see Table 3); bold font indicates the most consistent
impact estimates

significant deviation from the official ILI rate reports (Cook et al. 2011; Olson et al.
2013; Lazer et al. 2014).

Research has also considered content coming from the social platform of Twitter
as a publicly available alternative to access user-generated information. Regression
models, either regularized (Lampos and Cristianini 2010; Lampos et al. 2010) or based
on a smaller set of features (Culotta 2010), were used to infer ILI rates. Qualitative
properties of the HIN1 pandemic in 2009 have been investigated through an analysis
of tweets containing specific keywords (Chew and Eysenbach 2010) as well as a more
generic modeling (Signorini et al. 2011); in the latter work support vector regression
(Cristianini and Shawe-Taylor 2000) was used to estimate ILI rates. Bootstrapped
regularized regression (Bach 2008) has been applied to make the feature selection
process more robust (Lampos and Cristianini 2012); the same method has been applied
to infer rainfall rates from tweets, indicating some generalization capabilities of those
techniques. Furthermore, proof has been provided that for Twitter content a small set
of keywords can provide an adequate prediction performance (Culotta 2013). Other
studies, focused on unsupervised models that applied NLP methods in order to identify
disease oriented tweets (Lamb et al. 2013) or automatically extract health concepts
(Paul and Dredze 2014).

In this paper, we base our ILI modeling on previous findings, but apart from relying
on a linear model, we also investigate the performance of a nonlinear multi-kernel
GP (Rasmussen and Williams 2006). GPs have been applied in a number of fields,
ranging from geography (Oliver and Webster 1990) to sports analytics (Miller et al.
2014). Recently, they were also used—as a better performing alternative—in NLP tasks
such as the annotation modeling for machine translation (Cohn and Specia 2013), text
regression (Lampos et al. 2014), and text classification (Preotiuc-Pietro et al. 2015),
where various multi-modal features were combined in one learning function. To the
best of our knowledge, there has been no previous work aiming to model the impact of
a health intervention through user-generated online content. This evaluation is usually
conducted by an analysis of the various epidemiological surveillance outputs, if they
are available (Pebody et al. 2014; Matsubara et al. 2014). The core methodology (and
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its statistical properties) on which we based our impact analysis has been proposed by
Lambert and Pregibon (2008).

6 Discussion

We presented a statistical framework for transforming user-generated content pub-
lished on web platforms to an assessment of the impact of a health-oriented
intervention. As an intermediate step, we proposed a kernelized nonlinear GP regres-
sion model for learning disease rates from n-gram features. Assuming that an ILI
model trained on a national level represents sufficiently smaller parts of the country,
we used it as our ILI scoring tool throughout our experiments. Focusing on the theme
of influenza vaccinations (Osterholm et al. 2012; Baguelin et al. 2012), especially
after the HIN1 epidemic in 2009 (Smith et al. 2009), we measured the impact of a
pilot primary school LAIV program introduced in England during the 2013/14 flu
season. Our experimental results are in concordance with independent findings from
traditional influenza surveillance measurements (Pebody et al. 2014). The derived
vaccination impact assessments resulted in percentages (per vaccinated area or cumu-
latively) ranging from —21.06 to —32.77 % based on the two data sources available.

The results from Twitter data, however, demonstrated less sensitivity across similar
controls as compared to Bing data, suggesting a greater reliability. To that end, the
most reliable impact estimate from the processed tweets regarded an aggregation of
all vaccinated locations and was equal to —32.77 %. PHE’s own impact estimates
looked at various end-points, comparing vaccinated to all non vaccinated areas, and
ranged from —66 % based on sentinel surveillance ILI data to —24 % using laboratory
confirmed influenza hospitalizations; albeit, these numbers represent different levels
of severity or sensitivity, and notably none of these computations yielded statistical
significance (Pebody et al. 2014). Thus, we cannot use them as a directly comparable
metric, but mostly as a qualitative indication that the vaccination campaign is likely
to have been effective.

A legitimate question is whether our analysis can yield one number that quantifies
the intervention’s impact. This is a difficult undertaking given that no definite ground
truth exists to allow for a proper verification. In addition, our estimations are based
on models trained on syndromic surveillance data, which themselves may lack some
specificity, hence not forming a solid gold standard. Interestingly, for the three distinct
areas, where our method delivered statistically significant impact estimates based on
Twitter data, i.e., Havering (—41.21 %; see Appendix 2, Table 6), Newham (—30.44 %)
and Cumbria (—21.06 %), there exists a clear analogy with the reported level of vaccine
uptake—63.8, 45.6 and 35.8 % respectively—as published by PHE (Pebody et al.
2014); a similar pattern is evident in the Bing data. This observation provides further
support for the applied methodology.

Understanding the properties of the underlying population behind each disease sur-
veillance metric is instrumental. First of all, the demographics (age, social class) of
people who use a social media tool, a web search engine, or visit healthcare facilities
may vary. For example, we know that 51 % of the UK-based Twitter users are rela-
tively young (15-34 years old), whereas only an 11 % of them is 55 years or older
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(Ipsos MORI 2014). On the other hand, non-adults or the elderly are often responsible
for the majority of doctor visits or hospital admissions (O’Hara and Caswell 2012).
In addition, the relative volume of the aforementioned inputs also varies. We estimate
that Twitter users in our experiments represent at most 0.24 % of the UK population,
whereas Bing has a larger penetration (approx. 4.2 %; see Appendix 1 for details). On
the other side, in an effort to draw a comparable statistic, a 5-year study (2006-2011)
on a household-level community cohort in England indicated that only 17 % of the
people with confirmed influenza are medically attended (Hayward et al. 2014). An
other study estimated that 7500 (0.01 %) hospitalizations occurred due to the second
and strongest wave of the 2009 HIN1 pandemic in England, when the percentage
of the population being symptomatic was approx. 2.7 % (Presanis et al. 2011). It is,
therefore, a valid activity to seek complementary ways, sensors or population sam-
ples for quantifying infectious diseases or the success of a healthcare intervention
campaign.

Our method accesses a different segment of the population compared to traditional
surveillance schemes, given that Internet users provide a potentially larger sample
compared to the people seeking medical attention. The caveat is that user-generated
content will be more noisy, thus, less reliable compared to doctor reports, and that it
will entail certain biases. However, it can be advantageous, when data from traditional
epidemiological sources are sparse, e.g., due to a mild influenza season, but also useful
in other settings, where either traditional surveillance schemes are not well established
or amore geographically focused signal is required. Despite the fact that our case study
focuses on influenza, the proposed framework can potentially be adapted for estimating
the impact of different health intervention scenarios. Future work should be focused
on improving the various components of such frameworks as well as in the design of
experimental settings that can provide a more rigorous evaluation ability.
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Appendix 1: Twitter and Bing populations in the UK

Knowing that Twitter users represented approx. 13—15 % of the UK population in the
years 2012 to 2014 (Ipsos MORI 2014) and that only 1.6 % of these users tend to
enable the exact geo-location feature (Leetaru et al. 2013), we can estimate that the
Twitter data in our experiments represents at most 0.24 % of the population. Bing data
have a larger penetration, estimated to be around 4.2 % by combining the search tool’s
market share (approx. 5 %) and the percentage of households with Internet access in
the UK (Office for National Statistics, Great Britain 2013, 2014b).
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Appendix 2: Supplemental outputs

See Tables 5, 6, and Fig. 4.

Table 5 Performance figures for ILI prediction under the GP-kernel model using Twitter data and different
sets of n-gram features

w(r) w(MAE) x 103
GP-kernel (1-grams) 739 (.177) 2.405 (0.732)
GP-kernel (2-3-4-grams) .836 (.068) 2.246 (0.389)

The experimental setting corresponds to the results presented in the first row of Table 2
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