44 research outputs found
Striking Denervation of Neuromuscular Junctions without Lumbar Motoneuron Loss in Geriatric Mouse Muscle
Reasons for the progressive age-related loss of skeletal muscle mass and function, namely sarcopenia, are complex. Few studies describe sarcopenia in mice, although this species is the mammalian model of choice for genetic intervention and development of pharmaceutical interventions for muscle degeneration. One factor, important to sarcopenia-associated neuromuscular change, is myofibre denervation. Here we describe the morphology of the neuromuscular compartment in young (3 month) compared to geriatric (29 month) old female C57Bl/6J mice. There was no significant difference in the size or number of motoneuron cell bodies at the lumbar level (L1–L5) of the spinal cord at 3 and 29 months. However, in geriatric mice, there was a striking increase (by ∼2.5 fold) in the percentage of fully denervated neuromuscular junctions (NMJs) and associated deterioration of Schwann cells in fast extensor digitorum longus (EDL), but not in slow soleus muscles. There were also distinct changes in myofibre composition of lower limb muscles (tibialis anterior (TA) and soleus) with a shift at 29 months to a faster phenotype in fast TA muscle and to a slower phenotype in slow soleus muscle. Overall, we demonstrate complex changes at the NMJ and muscle levels in geriatric mice that occur despite the maintenance of motoneuron cell bodies in the spinal cord. The challenge is to identify which components of the neuromuscular system are primarily responsible for the marked changes within the NMJ and muscle, in order to selectively target future interventions to reduce sarcopenia
Consensus guidelines for the use and interpretation of angiogenesis assays
The formation of new blood vessels, or angiogenesis, is a complex process that plays important roles in growth and development, tissue and organ regeneration, as well as numerous pathological conditions. Angiogenesis undergoes multiple discrete steps that can be individually evaluated and quantified by a large number of bioassays. These independent assessments hold advantages but also have limitations. This article describes in vivo, ex vivo, and in vitro bioassays that are available for the evaluation of angiogenesis and highlights critical aspects that are relevant for their execution and proper interpretation. As such, this collaborative work is the first edition of consensus guidelines on angiogenesis bioassays to serve for current and future reference
Hepcidin-25 in Chronic Hemodialysis Patients Is Related to Residual Kidney Function and Not to Treatment with Erythropoiesis Stimulating Agents
Hepcidin-25, the bioactive form of hepcidin, is a key regulator of iron homeostasis as it induces internalization and degradation of ferroportin, a cellular iron exporter on enterocytes, macrophages and hepatocytes. Hepcidin levels are increased in chronic hemodialysis (HD) patients, but as of yet, limited information on factors associated with hepcidin-25 in these patients is available. In the current cross-sectional study, potential patient-, laboratory- and treatment-related determinants of serum hepcidin-20 and -25, were assessed in a large cohort of stable, prevalent HD patients. Baseline data from 405 patients (62% male; age 63.7±13.9 [mean SD]) enrolled in the CONvective TRAnsport STudy (CONTRAST; NCT00205556) were studied. Predialysis hepcidin concentrations were measured centrally with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Patient-, laboratory- and treatment related characteristics were entered in a backward multivariable linear regression model. Hepcidin-25 levels were independently and positively associated with ferritin (p<0.001), hsCRP (p<0.001) and the presence of diabetes (p = 0.02) and inversely with the estimated glomerular filtration rate (p = 0.01), absolute reticulocyte count (p = 0.02) and soluble transferrin receptor (p<0.001). Men had lower hepcidin-25 levels as compared to women (p = 0.03). Hepcidin-25 was not associated with the maintenance dose of erythropoiesis stimulating agents (ESA) or iron therapy. In conclusion, in the currently studied cohort of chronic HD patients, hepcidin-25 was a marker for iron stores and erythropoiesis and was associated with inflammation. Furthermore, hepcidin-25 levels were influenced by residual kidney function. Hepcidin-25 did not reflect ESA or iron dose in chronic stable HD patients on maintenance therapy. These results suggest that hepcidin is involved in the pathophysiological pathway of renal anemia and iron availability in these patients, but challenges its function as a clinical parameter for ESA resistance