122 research outputs found

    A type of familial cleft of the soft palate maps to 2p24.2–p24.1 or 2p21–p12

    Get PDF
    Cleft of the soft palate (CSP) and the hard palate are subtypes of cleft palate. Patients with either condition often have difficulty with speech and swallowing. Nonsyndromic, cleft palate isolated has been reported to be associated with several genes, but to our knowledge, there have been no detailed genetic investigations of CSP. We performed a genome-wide linkage analysis using a single-nucleotide polymorphism-based microarray platform and successively using microsatellite markers in a family in which six members, across three successive generations, had CSP. A maximum LOD score of 2.408 was obtained at 2p24.2-24.1 and 2p21-p12, assuming autosomal dominant inheritance. Our results suggest that either of these regions is responsible for this type of CSP

    Activation of β-Catenin by Oncogenic PIK3CA and EGFR Promotes Resistance to Glucose Deprivation by Inducing a Strong Antioxidant Response

    Get PDF
    Glucose is an essential fuel for cell survival and its availability limits aberrant cellular proliferation. We have hypothesized that specific cancer mutations regulate metabolic response(s) to glucose deprivation (GD). By means of somatic knock-in cellular models, we have analyzed the response to glucose deprivation in cells carrying the frequent delE746-A750EGFR, G13DKRAS or E545KPIK3CA cancer alleles. We demonstrate that, in mammary epithelial cells, glucose has an essential antioxidant function and that these cells are very sensitive to GD. Conversely, isogenic cells carrying the delE746-A750EGFR or the E545KPIK3CA, but not the G13DKRAS allele, display high tolerance to GD by stimulating the expression of anti-oxidant genes (MnSOD and catalase). This adaptive transcriptional response is mediated by the activation of WNT/β-catenin and FOXO4 signalling. Our data highlights a new functional synergism between oncogenic EGFR and PIK3CA with WNT/β-catenin conferring high tolerance to oxidative stress generated by nutrient deprivation

    TWEAK Affects Keratinocyte G2/M Growth Arrest and Induces Apoptosis through the Translocation of the AIF Protein to the Nucleus

    Get PDF
    The soluble TNF-like weak inducer of apoptosis (TWEAK, TNFSF12) binds to the fibroblast growth factor-inducible 14 receptor (FN14, TNFRSF12A) on the cell membrane and induces multiple biological responses, such as proliferation, migration, differentiation, angiogenesis and apoptosis. Previous reports show that TWEAK, which does not contain a death domain in its cytoplasmic tail, induces the apoptosis of tumor cell lines through the induction of TNFα secretion. TWEAK induces apoptosis in human keratinocytes. Our experiments clearly demonstrate that TWEAK does not induce the secretion of TNFα or TRAIL proteins. The use of specific inhibitors and the absence of procaspase-3 cleavage suggest that the apoptosis of keratinocytes follows a caspase- and cathepsin B-independent pathway. Further investigation showed that TWEAK induces a decrease in the mitochondrial membrane potential of keratinocytes. Confocal microscopy showed that TWEAK induces the cleavage and the translocation of apoptosis inducing factor (AIF) from the mitochondria to the nucleus, thus initiating caspase-independent apoptosis. Moreover, TWEAK induces FOXO3 and GADD45 expression, cdc2 phosphorylation and cdc2 and cyclinB1 degradation, resulting in the arrest of cell growth at the G2/M phase. Finally, we report that TWEAK and FN14 are normally expressed in the basal layer of the physiological epidermis and are greatly enhanced in benign (psoriasis) and malignant (squamous cell carcinoma) skin pathologies that are characterized by an inflammatory component. TWEAK might play an essential role in skin homeostasis and pathology

    Discovery of a Novel, Isothiazolonaphthoquinone-Based Small Molecule Activator of FOXO Nuclear-Cytoplasmic Shuttling

    Get PDF
    FOXO factors are tumour suppressor proteins commonly inactivated in human tumours by posttranslational modifications. Furthermore, genetic variation within the FOXO3a gene is consistently associated with human longevity. Therefore, the pharmacological activation of FOXO proteins is considered as an attractive therapeutic approach to treat cancer and age-related diseases. In order to identify agents capable of activating FOXOs, we tested a collection of small chemical compounds using image-based high content screening technology. Here, we report the discovery of LOM612 (compound 1a), a newly synthesized isothiazolonaphthoquinone as a potent FOXO relocator. Compound 1a induces nuclear translocation of a FOXO3a reporter protein as well as endogenous FOXO3a and FOXO1 in U2OS cells in a dose-dependent manner. This activity does not affect the subcellular localization of other cellular proteins including NFkB or inhibit CRM1-mediated nuclear export. Furthermore, compound 1a shows a potent antiproliferative effect in human cancer cell lines

    Resveratrol Induces Growth Arrest and Apoptosis through Activation of FOXO Transcription Factors in Prostate Cancer Cells

    Get PDF
    Resveratrol, a naturally occurring phytopolyphenol compound, has attracted extensive interest in recent years because of its diverse pharmacological characteristics. Although resveratrol possesses chemopreventive properties against several cancers, the molecular mechanisms by which it inhibits cell growth and induces apoptosis have not been clearly understood. The present study was carried out to examine whether PI3K/AKT/FOXO pathway mediates the biological effects of resveratrol.Resveratrol inhibited the phosphorylation of PI3K, AKT and mTOR. Resveratrol, PI3K inhibitors (LY294002 and Wortmannin) and AKT inhibitor alone slightly induced apoptosis in LNCaP cells. These inhibitors further enhanced the apoptosis-inducing potential of resveratrol. Overexpression of wild-type PTEN slightly induced apoptosis. Wild type PTEN and PTEN-G129E enhanced resveratrol-induced apoptosis, whereas PTEN-G129R had no effect on proapoptotic effects of resveratrol. Furthermore, apoptosis-inducing potential of resveratrol was enhanced by dominant negative AKT, and inhibited by wild-type AKT and constitutively active AKT. Resveratrol has no effect on the expression of FKHR, FKHRL1 and AFX genes. The inhibition of FOXO phosphorylation by resveratrol resulted in its nuclear translocation, DNA binding and transcriptional activity. The inhibition of PI3K/AKT pathway induced FOXO transcriptional activity resulting in induction of Bim, TRAIL, p27/KIP1, DR4 and DR5, and inhibition of cyclin D1. Similarly, resveratrol-induced FOXO transcriptional activity was further enhanced when activation of PI3K/AKT pathway was blocked. Over-expression of phosphorylation deficient mutants of FOXO proteins (FOXO1-TM, FOXO3A-TM and FOXO4-TM) induced FOXO transcriptional activity, which was further enhanced by resveratrol. Inhibition of FOXO transcription factors by shRNA blocked resveratrol-induced upregulation of Bim, TRAIL, DR4, DR5, p27/KIP1 and apoptosis, and inhibition of cyclin D1 by resveratrol.These data suggest that FOXO transcription factors mediate anti-proliferative and pro-apoptotic effects of resveratrol, in part due to activation of extrinsic apoptosis pathway

    A Transcription Elongation Factor That Links Signals from the Reproductive System to Lifespan Extension in Caenorhabditis elegans

    Get PDF
    In Caenorhabditis elegans and Drosophila melanogaster, the aging of the soma is influenced by the germline. When germline-stem cells are removed, aging slows and lifespan is increased. The mechanism by which somatic tissues respond to loss of the germline is not well-understood. Surprisingly, we have found that a predicted transcription elongation factor, TCER-1, plays a key role in this process. TCER-1 is required for loss of the germ cells to increase C. elegans' lifespan, and it acts as a regulatory switch in the pathway. When the germ cells are removed, the levels of TCER-1 rise in somatic tissues. This increase is sufficient to trigger key downstream events, as overexpression of tcer-1 extends the lifespan of normal animals that have an intact reproductive system. Our findings suggest that TCER-1 extends lifespan by promoting the expression of a set of genes regulated by the conserved, life-extending transcription factor DAF-16/FOXO. Interestingly, TCER-1 is not required for DAF-16/FOXO to extend lifespan in animals with reduced insulin/IGF-1 signaling. Thus, TCER-1 specifically links the activity of a broadly deployed transcription factor, DAF-16/FOXO, to longevity signals from reproductive tissues

    Resveratrol Enhances Antitumor Activity of TRAIL in Prostate Cancer Xenografts through Activation of FOXO Transcription Factor

    Get PDF
    Resveratrol (3, 4', 5 tri-hydroxystilbene), a naturally occurring polyphenol, exhibits anti-inflammatory, antioxidant, cardioprotective and antitumor activities. We have recently shown that resveratrol can enhance the apoptosis-inducing potential of TRAIL in prostate cancer cells through multiple mechanisms in vitro. Therefore, the present study was designed to validate whether resveratrol can enhance the apoptosis-inducing potential of TRAIL in a xenograft model of prostate cancer.Resveratrol and TRAIL alone inhibited growth of PC-3 xenografts in nude mice by inhibiting tumor cell proliferation (PCNA and Ki67 staining) and inducing apoptosis (TUNEL staining). The combination of resveratrol and TRAIL was more effective in inhibiting tumor growth than single agent alone. In xenografted tumors, resveratrol upregulated the expressions of TRAIL-R1/DR4, TRAIL-R2/DR5, Bax and p27(/KIP1), and inhibited the expression of Bcl-2 and cyclin D1. Treatment of mice with resveratrol and TRAIL alone inhibited angiogenesis (as demonstrated by reduced number of blood vessels, and VEGF and VEGFR2 positive cells) and markers of metastasis (MMP-2 and MMP-9). The combination of resveratrol with TRAIL further inhibited number of blood vessels in tumors, and circulating endothelial growth factor receptor 2-positive endothelial cells than single agent alone. Furthermore, resveratrol inhibited the cytoplasmic phosphorylation of FKHRL1 resulting in its enhanced activation as demonstrated by increased DNA binding activity.These data suggest that resveratrol can enhance the apoptosis-inducing potential of TRAIL by activating FKHRL1 and its target genes. The ability of resveratrol to inhibit tumor growth, metastasis and angiogenesis, and enhance the therapeutic potential of TRAIL suggests that resveratrol alone or in combination with TRAIL can be used for the management of prostate cancer

    KRIT1 Regulates the Homeostasis of Intracellular Reactive Oxygen Species

    Get PDF
    KRIT1 is a gene responsible for Cerebral Cavernous Malformations (CCM), a major cerebrovascular disease characterized by abnormally enlarged and leaky capillaries that predispose to seizures, focal neurological deficits, and fatal intracerebral hemorrhage. Comprehensive analysis of the KRIT1 gene in CCM patients has suggested that KRIT1 functions need to be severely impaired for pathogenesis. However, the molecular and cellular functions of KRIT1 as well as CCM pathogenesis mechanisms are still research challenges. We found that KRIT1 plays an important role in molecular mechanisms involved in the maintenance of the intracellular Reactive Oxygen Species (ROS) homeostasis to prevent oxidative cellular damage. In particular, we demonstrate that KRIT1 loss/down-regulation is associated with a significant increase in intracellular ROS levels. Conversely, ROS levels in KRIT1−/− cells are significantly and dose-dependently reduced after restoration of KRIT1 expression. Moreover, we show that the modulation of intracellular ROS levels by KRIT1 loss/restoration is strictly correlated with the modulation of the expression of the antioxidant protein SOD2 as well as of the transcriptional factor FoxO1, a master regulator of cell responses to oxidative stress and a modulator of SOD2 levels. Furthermore, we show that the KRIT1-dependent maintenance of low ROS levels facilitates the downregulation of cyclin D1 expression required for cell transition from proliferative growth to quiescence. Finally, we demonstrate that the enhanced ROS levels in KRIT1−/− cells are associated with an increased cell susceptibility to oxidative DNA damage and a marked induction of the DNA damage sensor and repair gene Gadd45α, as well as with a decline of mitochondrial energy metabolism. Taken together, our results point to a new model where KRIT1 limits the accumulation of intracellular oxidants and prevents oxidative stress-mediated cellular dysfunction and DNA damage by enhancing the cell capacity to scavenge intracellular ROS through an antioxidant pathway involving FoxO1 and SOD2, thus providing novel and useful insights into the understanding of KRIT1 molecular and cellular functions
    corecore