744 research outputs found

    The WNK-SPAK/OSR1 pathway: master regulator of cation-chloride cotransporters

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this recordThe WNK-SPAK/OSR1 kinase complex is composed of the kinases WNK (with no lysine) and SPAK (SPS1-related proline/alanine-rich kinase) or the SPAK homolog OSR1 (oxidative stress-responsive kinase 1). The WNK family senses changes in intracellular Cl(-) concentration, extracellular osmolarity, and cell volume and transduces this information to sodium (Na(+)), potassium (K(+)), and chloride (Cl(-)) cotransporters [collectively referred to as CCCs (cation-chloride cotransporters)] and ion channels to maintain cellular and organismal homeostasis and affect cellular morphology and behavior. Several genes encoding proteins in this pathway are mutated in human disease, and the cotransporters are targets of commonly used drugs. WNKs stimulate the kinases SPAK and OSR1, which directly phosphorylate and stimulate Cl(-)-importing, Na(+)-driven CCCs or inhibit the Cl(-)-extruding, K(+)-driven CCCs. These coordinated and reciprocal actions on the CCCs are triggered by an interaction between RFXV/I motifs within the WNKs and CCCs and a conserved carboxyl-terminal docking domain in SPAK and OSR1. This interaction site represents a potentially druggable node that could be more effective than targeting the cotransporters directly. In the kidney, WNK-SPAK/OSR1 inhibition decreases epithelial NaCl reabsorption and K(+) secretion to lower blood pressure while maintaining serum K(+). In neurons, WNK-SPAK/OSR1 inhibition could facilitate Cl(-) extrusion and promote γ-aminobutyric acidergic (GABAergic) inhibition. Such drugs could have efficacy as K(+)-sparing blood pressure-lowering agents in essential hypertension, nonaddictive analgesics in neuropathic pain, and promoters of GABAergic inhibition in diseases associated with neuronal hyperactivity, such as epilepsy, spasticity, neuropathic pain, schizophrenia, and autism.D.R.A. research in this area is supported by the Medical Research Council and the Wellcome Trust [grant number 091415] and the pharmaceutical companies supporting the Division of Signal Transduction Therapy Unit (AstraZeneca, Boehringer-Ingelheim, GlaxoSmithKline, Merck KGaA, Janssen Pharmaceutica and Pfizer). K.T.K. is supported by the Manton Center for Orphan Diseases at Children's Hospital Boston at Harvard Medical School, and the Harvard/MIT Joint Research Grants Program in Basic Neuroscience

    Brain penetrant LRRK2 inhibitor

    Get PDF
    This is the author accepted manuscript. The final version is available from ACS via the DOI in this record. Activating mutations in leucine-rich repeat kinase 2 (LRRK2) are present in a subset of Parkinson's disease (PD) patients and may represent an attractive therapeutic target. Here, we report that a 2-anilino-4-methylamino-5- chloropyrimidine, HG-10-102-01 (4), is a potent and selective inhibitor of wild-type LRRK2 and the G2019S mutant. Compound 4 substantially inhibits Ser910 and Ser935 phosphorylation of both wild-type LRRK2 and G2019S mutant at a concentration of 0.1-0.3 μM in cells and is the first compound reported to be capable of inhibiting Ser910 and Ser935 phosphorylation in mouse brain following intraperitoneal delivery of doses as low as 50 mg/kg. © 2012 American Chemical Society.NIHMedical Research CouncilMichael J Fox foundation for Parkinson’s disease researchPharmaceutical companies supporting the DSTT (AstraZeneca, Boehringer-Ingelheim, GlaxoSmithKline, Merck KgaA and Pfizer

    The WNK-regulated SPAK/OSR1 kinases directly phosphorylate and inhibit the K+-Cl- co-transporters

    Get PDF
    This is the final version of the article. Available from Portland Press via the DOI in this record.There is another ORE record for this publication: http://hdl.handle.net/10871/32310Precise homoeostasis of the intracellular concentration of Cl- is achieved via the co-ordinated activities of the Cl- influx and efflux. We demonstrate that the WNK (WNK lysine-deficient protein kinase)-activated SPAK (SPS1-related proline/alanine-rich kinase)/OSR1 (oxidative stress-responsive kinase 1) known to directly phosphorylate and stimulate the N[K]CCs (Na+-K+ ion co-transporters), also promote inhibition of the KCCs (K+-Cl- co-transporters) by directly phosphorylating a recently described C-terminal threonine residue conserved in all KCC isoforms [Site-2 (Thr1048)]. First, we demonstrate that SPAK and OSR1, in the presence of the MO25 regulatory subunit, robustly phosphorylates all KCC isoforms at Site-2 in vitro. Secondly, STOCK1S-50699, a WNK pathway inhibitor, suppresses SPAK/OSR1 activation and KCC3A Site-2 phosphorylation with similar efficiency. Thirdly, in ES (embryonic stem) cells lacking SPAK/OSR1 activity, endogenous phosphorylation of KCC isoforms at Site-2 is abolished and these cells display elevated basal activity of 86Rb+ uptake that was not markedly stimulated further by hypotonic high K+ conditions, consistent with KCC3A activation. Fourthly, a tight correlation exists between SPAK/OSR1 activity and the magnitude of KCC3A Site-2 phosphorylation. Lastly, a Site-2 alanine KCC3A mutant preventing SPAK/OSR1 phosphorylation exhibits increased activity. We also observe that KCCs are directly phosphorylated by SPAK/OSR1, at a novel Site-3 (Thr5 in KCC1/KCC3 and Thr6 in KCC2/KCC4), and a previously recognized KCC3-specific residue, Site-4 (Ser96). These data demonstrate that the WNK-regulated SPAK/OSR1 kinases directly phosphorylate the N[K]CCs and KCCs, promoting their stimulation and inhibition respectively. Given these reciprocal actions with anticipated net effects of increasing Cl- influx, we propose that the targeting of WNK-SPAK/OSR1 with kinase inhibitors might be a novel potent strategy to enhance cellular Cl- extrusion, with potential implications for the therapeutic modulation of epithelial and neuronal ion transport in human disease states.This work was supported by the Medical Research Council and the Wellcome Trust [grant number 091415] as well as the pharmaceutical companies supporting the Division of Signal Transduction Therapy Unit (AstraZeneca, Boehringer-Ingelheim, GlaxoSmithKline, Merck KgaA, Janssen Pharmaceutica and Pfizer). K.T.K. is supported by the Manton Center for Orphan Diseases at Children's Hospital Boston at Harvard Medical School, and the Harvard/MIT Joint Research Grants Program in Basic Neuroscience

    Human With No Lysine Kinase 3 (WNK3): A Target Enabling Package (TEP)

    Get PDF
    The Target Enabling Package (TEP) programme's foundation is built upon the recognition that genetic data is proving to be a powerful tool for target validation. As such, TEPs provide a critical mass of reagents and knowledge on a protein target to allow rapid biochemical and chemical exploration and characterisation of proteins with genetic linkage to key disease areas. TEPs provide an answer to the missing link between genomics and chemical biology, provide a starting point for chemical probe generation and therefore catalyse new biology and disease understanding with the ultimate aim of enabling translation collaborations and target/ drug discovery. We are committed to generating and making available 24 high-quality TEPs by June 2020.SUMMARY OF PROJECT Kinases WNK1-4 regulate cation-chloride cotransporters via phosphorylation of SPAK and OSR1 and thereby control salt homeostasis, cell volume and blood pressure. Gain of function mutations in WNK kinases are found in Gordon’s hypertension syndrome suggesting the WNK pathway as a therapeutic target. WNK3 inhibition in particular has also been shown to reduce cerebral injury after Ischemic stroke. Here we present assays and crystal structures that define (i) the molecular basis for disease mutations; (ii) the multiple functional domains of WNK kinases and their protein interactions; (iii) the binding of small molecule kinase inhibitors and a potential allosteric pocket.The work performed at the SGC has been funded by a grant from the Wellcome [106169/ZZ14/Z]

    PDK-1/AKT pathway as a novel therapeutic target in rhabdomyosarcoma cells using OSU-03012 compound

    Get PDF
    Rhabdomyosarcoma (RMS) is the most common paediatric soft-tissue sarcoma including two major subtypes, alveolar rhabdomyosarcoma (ARMS) and embryonal rhabdomyosarcoma (ERMS). Increasing evidence suggests that oncogenesis of RMS involves multistages of signalling protein dysregulation which may include prolonged activation of serine/threonine kinases such as phosphoinositide-dependant kinase-1 (PDK-1) and AKT. To date, whether PDK-1/AKT pathway is activated in RMS is unknown. This study was to examine phosphorylation status of AKT and to evaluate a novel small molecular inhibitor, OSU-03012 targeting PDK-1 in RMS. We examined phosphorylation levels of AKT using ARMS and ERMS tissue microarray and immunohistochemistry staining. Our results showed phospho-AKTThr308 level is elevated 42 and 35% in ARMS and ERMS, respectively. Phospho-AKTSer473 level is also increased 43% in ARMS and 55% in ERMS. Furthermore, we showed that OSU-03012 inhibits cell viability and induces apoptosis in ARMS and ERMS cell lines (RH30, SMS-CTR), which express elevated phospho-AKT levels. Normal cells are much less sensitive to OSU-03012 and in which no detectable apoptosis was observed. This study showed, for the first time, that PDK-1/AKT pathway is activated in RMS and may play an important role in survival of RMS. PDK-1/AKT pathway may be an attractive therapeutic target for cancer intervention in RMS using OSU-03012

    The LKB1-salt-inducible kinase pathway functions as a key gluconeogenic suppressor in the liver

    Get PDF
    LKB1 is a master kinase that regulates metabolism and growth through adenosine monophosphate-activated protein kinase (AMPK) and 12 other closely related kinases. Liver-specific ablation of LKB1 causes increased glucose production in hepatocytes in vitro and hyperglycaemia in fasting mice in vivo. Here we report that the salt-inducible kinases (SIK1, 2 and 3), members of the AMPK-related kinase family, play a key role as gluconeogenic suppressors downstream of LKB1 in the liver. The selective SIK inhibitor HG-9-91-01 promotes dephosphorylation of transcriptional co-activators CRTC2/3 resulting in enhanced gluconeogenic gene expression and glucose production in hepatocytes, an effect that is abolished when an HG-9-91-01-insensitive mutant SIK is introduced or LKB1 is ablated. Although SIK2 was proposed as a key regulator of insulin-mediated suppression of gluconeogenesis, we provide genetic evidence that liver-specific ablation of SIK2 alone has no effect on gluconeogenesis and insulin does not modulate SIK2 phosphorylation or activity. Collectively, we demonstrate that the LKB1-SIK pathway functions as a key gluconeogenic gatekeeper in the liver

    LRRK2 is a negative regulator of <em>Mycobacterium tuberculosis</em> phagosome maturation in macrophages

    Get PDF
    \ua9 2018 EMBO. Mutations in the leucine-rich repeat kinase 2 (LRRK2) are associated with Parkinson\u27s disease, chronic inflammation and mycobacterial infections. Although there is evidence supporting the idea that LRRK2 has an immune function, the cellular function of this kinase is still largely unknown. By using genetic, pharmacological and proteomics approaches, we show that LRRK2 kinase activity negatively regulates phagosome maturation via the recruitment of the Class III phosphatidylinositol-3 kinase complex and Rubicon to the phagosome in macrophages. Moreover, inhibition of LRRK2 kinase activity in mouse and human macrophages enhanced Mycobacterium tuberculosis phagosome maturation and mycobacterial control independently of autophagy. In vivo, LRRK2 deficiency in mice resulted in a significant decrease in M. tuberculosis burdens early during the infection. Collectively, our findings provide a molecular mechanism explaining genetic evidence linking LRRK2 to mycobacterial diseases and establish an LRRK2-dependent cellular pathway that controls M. tuberculosis replication by regulating phagosome maturation

    TOR complex 2 is needed for cell cycle progression and anchorage-independent growth of MCF7 and PC3 tumor cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>AKT signaling promotes cell growth, proliferation and survival and is hyperactivated in many cancers. TOR complex 2 (TORC2) activates AKT by phosphorylating it on the 'hydrophobic motif' site. Hydrophobic motif site phosphorylation is needed only for a subset of AKT functions. Whether proliferation of tumor cells depends on TORC2 activity has not been thoroughly explored.</p> <p>Methods</p> <p>We used RNAi-mediated knockdown of rictor to inhibit TORC2 activity in MCF7 and PC3 tumor cells to analyze the importance of TORC2 on proliferation of tumor cells.</p> <p>Results</p> <p>TORC2 inhibition reduced proliferation and anchorage-independent growth of both cell lines. Rictor depleted cells accumulated G1 phase, and showed prominent downregulation of Cyclin D1.</p> <p>Conclusion</p> <p>This study provides further evidence that inhibition of TORC2 activity might be a useful strategy to inhibit proliferation of tumor cells and subsequent tumor growth.</p

    Activation of Akt by the Bacterial Inositol Phosphatase, SopB, is Wortmannin Insensitive

    Get PDF
    Salmonella enterica uses effector proteins translocated by a Type III Secretion System to invade epithelial cells. One of the invasion-associated effectors, SopB, is an inositol phosphatase that mediates sustained activation of the pro-survival kinase Akt in infected cells. Canonical activation of Akt involves membrane translocation and phosphorylation and is dependent on phosphatidyl inositide 3 kinase (PI3K). Here we have investigated these two distinct processes in Salmonella infected HeLa cells. Firstly, we found that SopB-dependent membrane translocation and phosphorylation of Akt are insensitive to the PI3K inhibitor wortmannin. Similarly, depletion of the PI3K regulatory subunits p85α and p85ß by RNAi had no inhibitory effect on SopB-dependent Akt phosphorylation. Nevertheless, SopB-dependent phosphorylation does depend on the Akt kinases, PDK1 and rictor-mTOR. Membrane translocation assays revealed a dependence on SopB for Akt recruitment to Salmonella ruffles and suggest that this is mediated by phosphoinositide (3,4) P2 rather than phosphoinositide (3,4,5) P3. Altogether these data demonstrate that Salmonella activates Akt via a wortmannin insensitive mechanism that is likely a class I PI3K-independent process that incorporates some essential elements of the canonical pathway
    corecore