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Abstract 

High-resolution mass spectrometry maps the cytotoxic T lymphocyte (CTL) proteome 

and the impact of mammalian target of rapamycin complex 1 (mTORC1) on CTLs. 

The CTL proteome was dominated by metabolic regulators and granzymes and 

mTORC1 selectively repressed and promoted expression of subset of CTL proteins 

(~10%). These included key CTL effector molecules, signaling proteins and a subset 

of metabolic enzymes. Proteomic data highlighted the potential for mTORC1 negative 

control of phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P3) production in 

CTL. mTORC1 was shown to repress PtdIns(3,4,5)P3 production and to determine the 

mTORC2 requirement for activation of the kinase Akt. Unbiased proteomic analysis 

thus provides a comprehensive understanding of CTL identity and mTORC1 control 

of CTL function.  
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Systematic analyses of lymphocyte transcriptomes have yielded important insights 

about lymphocytes
1
. However, changes in rates of protein synthesis/turnover create 

discordances between transcriptomes and proteomes
2,3

 and there is the need for 

quantitative proteomics mapping of cellular protein signatures to fully define cell 

identity
4,5

. In this context, the serine/threonine kinase mTOR complex 1 (mammalian 

target of rapamycin complex 1), controls mRNA translation and protein degradation 

and controls CD8
+
 cytotoxic T lymphocyte (CTL) differentiation

6,7,8
. mTORC1 has 

two known substrates in T cells: p70 S6-Kinase 1 (S6K1) and eIF4E-binding protein 

1 (4EBP1), molecules that regulate protein production
9
. Moreover, one mTORC1 role 

is to control the translation of mRNAs with 5′-terminal oligopyrimidine (5′-TOP) 

motifs that encode ribosomal proteins and translation factors to globally enhance 

cellular protein synthetic capacity
10

. Understanding mTORC1 function in CTLs thus 

requires an understanding of how mTORC1 controls proteomes. For example, recent 

studies showed mTORC1 translational control of the sterol regulatory element-

binding proteins (SREBP1 and 2), which mediate expression of sterol biosynthesis 

enzymes
11,12

. mTORC1 translational control of the hypoxia-inducible factor 1 (HIF1) 

transcription factor complex also directs expression of glucose transporters, glycolytic 

enzymes and cytolytic effector molecules in CTLs
13

. The relevance of proteomics to 

understand the impact of mTORC1 in CTLs also stems from the ability of mTORC1 

to promote protein degradation. There are thus examples in other cell lineages where 

mTORC1 regulated phosphorylation of adapter proteins, such as either growth factor 

receptor-bound protein 10 (GRB10), or insulin receptor substrate (IRS) 1 or 2, 

modulates the degradation rates of these proteins
14,15,16

.  

A comprehensive analysis of mTORC1 control of T cell proteomes will hence 

directly inform how mTORC1 controls T cell biology. Accordingly we have used 

high-resolution mass spectrometry (MS) to map the proteome of CTL and to quantify 

the regulatory impact of mTORC1 and mTOR inhibition on CTL proteomes. We 

reveal the CTL proteome diversity and reveal how mTOR inhibitors control T cell 

function and program T cell signal transduction pathways.  
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Results 

 

The CTL proteome 

High resolution mass spectrometry characterized the proteome of P14 TCR transgenic 

CTLs (Supplementary Fig. 1), identifying more than 93,000 peptides from 6,800 

protein groups in these cells (Fig. 1a). iBAQ intensities, obtained by dividing the 

summed MS peptide-derived ion extracted ion chromatograms by the theoretically 

observable numbers of peptides, measure relative protein abundance
2,5

 and can be 

transformed into absolute quantification using proteomic ruler methodology
17

. Copy 

numbers for proteins from three biological replicates showed strong Pearson 

correlation coefficients (0.86–0.89), with very few outliers indicating robustness and 

reproducibility of our MS-based peptide quantitation methods (Fig. 1b).  

Proteomic data revealed protein abundance and specific protein isoforms/orthologues 

creating an objective description of cell ‘identity’ We ranked CTL proteins by 

estimated copy number and plotted this against cumulative protein copy number (Fig. 

1c). Proteins showed a wide range of expression spanning over seven orders of 

magnitude. 25 percent of the CTL protein mass comprised 12 proteins; 249 proteins 

constituted 75% of the total CTL mass; 6562 proteins contributed to the remaining 

25% of the CTL. The 20 most abundant CTL proteins included histones and 

cytoskeleton components vimentin and cofilin (Table 1). They also included 

translational machinery proteins, ribosomal proteins, initiation and elongation factors. 

The CTL effector molecule granzyme B and multiple glycolytic enzymes were in the 

top 20 list (Table 1) and the highest intensity quartile of the CTL proteome was 

enriched in pathways involved in metabolism and macromolecular biosynthesis (Fig. 

1c). As CD8
+
 T cells differentiate to CTL they switch from metabolizing glucose 

primarily through oxidative phosphorylation to using the glycolytic pathway
18

. 

Proteomic data showed much of the CTL protein mass is dedicated to glycolysis 

although CTLs retained abundant amounts of the protein machinery for oxidative 

phosphorylation suggesting that it may be important for them to retain flexibility in 

terms of their metabolic strategy for glucose metabolism (Fig. 1c).  

The proteomic data revealed new insights concerning protein isoform/orthologue 

expression in T cells. For example, CTLs expressed multiple nutrient transporters 

(Fig. 2a), but, in terms of abundance, the System L amino acid transporter SLC7A5 
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and its dimer partner SLC3A2 predominated. This finding explains why SLC7A5 

deletion has such a severe impact on CTL function
19

. Glucose transport is important 

for CTL
20

 and previous studies have focused on GLUT1 in T cells
21

.We showed that 

GLUT3, which has a higher glucose transport capacity than GLUT1
22

, was expressed 

at equivalent amounts to GLUT1 in CTLs (Fig. 2a). GLUT1 deletion impacts on T 

cell function
21

, but the presence of GLUT3 explains why GLUT1 loss is not 

catastrophic.  

We have also used proteomic ruler methodology
17

 to estimate absolute protein copy 

numbers to quantify the key cytokine receptors, transcription factors and effector 

molecules that define CTL identity. Granzymes A and B were present in high copy 

number in CTLs (4.9 × 10
6
 and 2.2 × 10

7
, respectively, (Fig. 2b)), which explains 

how CTLs can rapidly kill multiple targets. We observed a wide range in transcription 

factor copy numbers (Fig. 2c): STAT1, STAT3 and STAT5 copy numbers were high 

(10
4
–10

5
) compared to T-bet, Foxo1/3, EOMES, STAT4 or STAT6 (10

3
–10

4
). The 

high copy number of antigen receptor coupled tyrosine kinases Lck and Zap70, 

compared with the cytokine receptor coupled kinases JAK1/3 and TYK2 was notable 

(Fig. 2d). Intriguingly, the tyrosine phosphatases CD45 and SHP-1 were expressed at 

similar abundance to these tyrosine kinases, indicating the importance of negative 

regulators in intracellular signaling networks. The data also revealed cytokine 

receptor subunit stoichiometry. For example, interleukin 2 (IL-2) signals to T cells via 

a high-affinity receptor comprising CD25 (IL-2 receptor alpha chain, IL-2RA), IL-2 

receptor beta subunit (IL-2RB or CD122) and the common gamma subunit c 

(CD132). CTLs expressed approximately ~100-fold higher copies of CD25 compared 

to the IL-2RB and c subunits (Fig. 2e). Earlier studies have reported excesses of 

CD25 compared to numbers of high-affinity IL-2 receptor complexes on CTL 

membranes
23

 and an excess of CD25 over IL-2RB was quantified using flow 

cytometry
24

. The present data revealed IL-2RB and c subunit numbers were limiting 

at approximately 10
4
 copies of IL-2RB and 2-3×10

4
 c molecules per cell. IL-2RB and 

c subunits bind to JAK1 and JAK3, respectively, and the copy number for these 

kinases was broadly equivalent to IL-2RB–c subunit numbers indicating that high 

affinity IL-2 receptor formation in CTL is limited by availability of IL-2RB and c 

and associated tyrosine kinases. These examples all illustrate how understanding 

protein copy number can afford new insights about cell identity and cellular control 
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mechanisms. 

 

A comparison of the CTL transcriptome and proteome 

Systematic analysis of transcriptomes has yielded critical insights about how T cells 

direct adaptive immune responses
25

. We assessed whether proteomic data provided 

additional insights by correlating CTL estimated protein copy numbers with the 

transcript intensities of corresponding mRNA by using the probe intensities derived 

from a parallel Affymetrix microarray data set (Fig. 3a). The rather moderate positive 

correlation between mRNA and protein abundance (Fig. 3a), indicated that post-

transcriptional regulatory mechanisms significantly affect the CTL proteome. 

Examples of discordance between mRNA and protein abundance include that CTLs 

expressed comparable levels of T-bet and EOMES mRNAs, whereas T-bet protein 

was much more abundant than EOMES (Fig. 3b). In a second example, the ratio of 

IL-2 receptor  subunits estimated from transcript intensity was 3:1:2, whereas 

the protein intensity ratio was 92:1:2 (Fig. 3c). There was close correspondence 

between protein and transcript abundance for some proteins: e.g. ribosomal proteins 

and granzymes (Fig. 3d, e). Nevertheless the data highlight the importance of direct 

protein measurements, rather than mRNA measurements as a surrogate, for estimating 

protein expression. 

 

mTORC1 selectively programs the CTL proteome 

CTLs had high mTORC1 activity as judged by high content of phosphorylation of the 

mTORC1 substrates S6K1 (T389) and 4EBP1 (S37/46, S65) (Fig. 4a). Treatment of 

CTLs with the mTORC1 inhibitor rapamycin caused dephosphorylation of these two 

substrates (Fig. 4a). mTOR exists in two protein complexes, mTORC1 and mTORC2, 

that are defined by their scaffolding/regulator components. CTLs had high activity of 

mTORC2 as judged by high levels of phosphorylation of the mTORC2 substrate Akt 

at S473. Rapamycin did not cause dephosphorylation of Akt p-S473 (Fig. 4a). In 

contrast, an mTOR catalytic inhibitor, KU-0063794, that blocks the activity of both 

mTORC1 and mTORC2 (ref 
26

) caused dephosphorylation of Akt p-S473 and p-S6K1 
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T389 and p-4EBP1 (Fig 4a).  

Rapamycin treatment decreased CTL protein synthesis over a 24–48 h period and 

decreased CTL size and protein content (Fig. 4b, c). Quantitative mass spectrometry 

was then used to assess whether mTORC1 inhibition caused a small reduction of all 

proteins or targeted a protein subset. Three biological replicates of normal versus 

rapamycin treated CTL were analyzed at a single time point of 48 hours to assess the 

sustained effect of mTORC1 inhibition. Rapamycin treatment controlled a small CTL 

protein subset and decreased expression of 413 proteins and increased expression of 

427 proteins (Fig. 4d). Notably, mTORC1 inhibition decreased expression of multiple 

CTL effector molecules including granzymes, perforin, tumor necrosis factor (TNF) 

and interferon gamma (IFN-) (Fig. 4e). The decrease in IFN- production in 

rapamycin-treated CTLs was confirmed by ELISA (Fig. 4f). Previous studies reported 

mTORC1 control of IFN- by control of expression of the transcription factor T-bet
27

. 

We found no difference in T-bet expression between control and rapamycin-treated 

cells from mass spectrometry or immunoblot analysis (Fig. 4g). Notably, CD62L (L-

selectin), an adhesion molecule that controls T cell trafficking into secondary 

lymphoid tissue, was strongly upregulated in rapamycin-treated CTLs (Fig. 4d): a 

result validated using ELISA (Fig. 4h). Studies in non-lymphoid cells have reported 

mTORC1 induced degradation of adapter proteins GRB10 (refs. 
14,15

) and IRS1/2 (ref. 

16
). GRB10 or IRS1 were not detected in CTLs but there was an accumulation of 

IRS2 in rapamycin-treated CTLs, which was validated by immunoblotting (Fig. 4i). 

In terms of signaling molecules, mTORC1 activity was required to sustain expression 

of the transcription factor NFIL3 and the PtdIns(3,4,5)P3-phosphatase PTEN. 

mTORC1 was also required for the expression of glucose transporters and enzymes 

that control glycolysis (Fig. 5a), cholesterol biosynthesis enzymes (Fig. 5b), cytosolic 

aminoacyl-tRNA synthetases and cytosolic ribosomal subunits (Fig. 5c). Conversely, 

mTORC1 inhibition increased expression of CTL protein subsets including oxidative 

phosphorylation enzymes (Fig. 5d), mitochondrial aminoacyl-tRNA synthetases and 

ribosomes (Fig. 5e) and the guanine exchange factor DOCK1. mTORC1 is thus able 

to both positively and negatively regulate expression of a subset of CTL proteins and 

its role is selective and cell specific. 
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mTORC1 controlled transcriptomes versus proteomes 

mTORC1 controls expression the transcription factors, SREBP1/2 and HIF-1
12,13

. 

Affymetrix microarray analysis was thus used to assess the full extent of 

transcriptional changes caused by mTORC1 inhibition. Rapamycin treatment 

decreased expression of 226 mRNA transcripts and increased of 220 mRNA 

transcripts in CTLs (Fig. 6a). There was a strong correlation between the effects of 

mTORC1 inhibition on transcript and protein abundance for glucose transporters, 

glycolytic enzymes, cholesterol biosynthesis enzymes, granzymes, perforin and IFN- 

(Fig. 6b–d). However, of the 413 proteins down regulated in the rapamycin-treated 

CTLs, only 95 showed a corresponding change in transcript abundance. Similarly, of 

the 427 upregulated proteins, only 83 showed increased abundance of mRNA 

transcripts. mTORC1 inhibition thus regulated expression of cytoplasmic and 

mitochondrial subunits of ribosomal complexes, oxidative phosphorylation enzymes 

and proteins encoded by mRNA transcripts carrying a 5′-TOP motif
10

 at the protein 

but not the transcript level (Fig. 6e–g). Furthermore, rapamycin treatment of CTL 

regulated expression of IRS2, DOCK1, and PTEN at the protein but not mRNA level, 

highlighting the importance of direct proteomic analyses for cell phenotyping.  

 

Selective programming of CTL metabolism by mTORC1 

The present data show that only a small subclass of metabolic pathways were 

mTORC1 controlled in CTL, notably steroid biosynthesis and glycolytic pathways. 

CTLs express at least 72 nutrient transporters and only 6 of these were mTORC1 

regulated (Fig. 7a) highlighting the selectivity of mTORC1 control of T cell 

metabolism. In particular, mTORC1 inhibition did not prevent expression of SLC1A5 

(ASCT2) the key glutamine transporter in T cells
28

 (Fig. 7a) or decrease expression of 

enzymes that regulate glutamine metabolism (Supplementary Fig. 2). Indeed there 

was increased expression of some enzymes that control glutaminolytic reactions (e.g. 

GLUD1), in mTORC1-inhibited CTLs (Fig. 7b). We tested the relevance of these 

changes by measuring glutaminolysis activity and measured a higher glutaminolytic 

rate in mTORC1-inhibited CTLs (Fig. 7c). 

Another example of mTORC1 selectivity is that rapamycin caused loss of glycolytic 
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enzymes but increased expression of oxidative phosphorylation enzymes (Fig. 7d). 

The ability of rapamycin to increase expression of oxidative phosphorylation enzymes 

is consistent with the ability of rapamycin to promote the development of memory 

CD8
+
 T cells

7
 who are dependent on oxidative phosphorylation rather than 

glycolysis
29

. The changes in glycolytic enzymes were statistically significant and 

systematic albeit not large (Fig. 7d). Inhibition of mTORC1 thus decreased 

expression of multiple glycolytic enzymes but these enzymes are still abundant. 8% of 

the proteome of mTORC1 inhibitor-treated CTLs thus consists of glycolytic enzymes 

(Fig. 7e). We then measured glycolysis and oxygen consumption rates (OCR) of 

normal and rapamycin-treated CTLs. We assessed the cells in a basal state and after 

the addition of oligomycin (to block ATP synthesis), DNP (to uncouple ATP 

synthesis from the electron transport chain, and antimycin A and rotenone (to block 

electron transport chain complexes) to assess the spare respiratory capacity (SRC) of 

mitochondria. The baseline data showed that CTLs consumed oxygen (Fig. 7g) and 

were glycolytic, as judged by their extracellular acidification rate (ECAR) (Fig. 7h). 

There was no difference between control and mTORC1-inhibited CTLs in baseline 

oxygen consumption, or spare respiratory capacity (Fig. 7g). However, rapamycin-

treated CTLs had decreased rates of extracellular acidification reflecting that these 

cells have reduced rates of lactate output an indicator for their glycolytic activity (Fig. 

7h). They have not however fully ablated lactate production. These metabolic data 

confirmed the prediction from the proteomic data that CTLs do oxidative 

phosphorylation and glycolysis and that mTORC1 modulates glycolysis in CTL. 

What is the primary cause of the decreased glycolysis in mTORC1 inhibitor treated 

CTL given that these cells retain abundant expression of glycolytic enzymes. One 

important factor is that glucose transporters supply the glucose that fuels both 

oxidative phosphorylation and glycolysis. CTLs expressed 62,000 molecules of 

GLUT1 and 73,000 molecules of GLUT3 and these decreased to 36,000 and 48,000 

molecules, respectively in the mTORC1-inhibitor treated CTLs, which correlated with 

a 2-fold difference in glucose uptake (Fig. 7i). In this respect, rates of lactate output in 

CTLs were very sensitive to reduced supply of glucose (Fig. 7j) arguing that reduced 

glucose supply and not the loss of glycolytic enzymes limits glycolysis in rapamycin-

treated CTLs. Decreased glucose uptake in mTORC1-inhibited CTLs explains why 

there is no detectable increase in oxidative phosphorylation associated with their 



10 

 

increased expression of oxidative phosphorylation enzymes. 

 

mTORC1 restrains PI(3)K/Akt signaling in CTL  

We consistently saw that PTEN protein was down regulated in rapamycin-treated 

CTLs and this was validated by immunoblot analysis (Fig. 8a). PTEN 

dephosphorylates (PtdIns(3,4,5)P3 and its loss raised the possibility that mTORC1 

signaling normally restrains cellular accumulation of this lipid. We explored this 

directly and found that CTLs contained approximately 30,000 molecules of 

PtdIns(3,4,5)P3/cell (Fig. 8b). Inhibition of Phosphoinositide-3-kinase (PI(3)K) p110 

depletes PtdIns(3,4,5)P3 but rapamycin treatment increases cellular PtdIns(3,4,5)P3 

(more than 60,000 molecules PtdIns(3,4,5)P3/CTL after sustained mTORC1 

inhibition, (Fig. 8b)). 

PtdIns(3,4,5)P3 binds to the plextrin homology (PH) domain of Akt allowing the 

kinase PDK1 to phosphorylate Akt T308, thereby activating the enzyme
30

. 

Rapamycin-treated CTLs had more p-T308 as compared to untreated CTLs (Fig. 8c) 

and this phosphorylation was lost when the rapamycin-treated CTLs were treated with 

a PI(3)K p110δ inhibitor (Fig. 8d), or with AKTi1/2 (Fig. 8e), which prevents 

PtdIns(3,4,5)P3 binding the Akt PH-domain
31

. The increased PtdIns(3,4,5)P3 content 

in rapamycin-treated CTLs thus increased Akt activity revealing that mTORC1 

activity limits Akt function in CTLs. 

Many signaling models position mTOR as a positive regulator of Akt. This is because 

mTORC2 can phosphorylate Akt S473 (ref. 
32

) creating a docking site for the PDK1 

PIF-pocket promoting efficient PDK1 phosphorylation of Akt T308 and activating the 

enzyme
33

. In this context, Rictor-deficient T cells that lack mTORC2 reduce S473 and 

T308 phosphorylation indicating that the docking of phosphorylated Akt S473 to the 

PDK1 PIF-pocket can control Akt activity in T cells
34

. However, PDK1 contains a 

PtdIns(3,4,5)P3 binding PH-domain and PtdIns(3,4,5)P3 mediated co-localization of 

Akt and PDK1 can occur making Akt activation independent of Akt S473 

phosphorylation
35

.  

The mTOR catalytic inhibitor KU-0063794 was as effective as rapamycin in blocking 
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mTORC1 activity and down regulating expression of PTEN (Fig. 8f). KU-0063794 

also caused CTLs to accumulate PtdIns(3,4,5)P3 (Fig. 8g). High levels of 

PtdIns(3,4,5)P3 could switch the balance of whether Akt activity is regulated by the 

PIF-pocket dependent mechanism for AKT activation versus using a PDK1 PH-

domain dependent mechanism. In this respect, the integrity of the PDK1 PH domain 

is required for optimal Akt activation in CTL
36

. Therefore, to address the role of 

mTORC2/PIF-pocket dependent Akt activation in CTLs we examined the effect of 

KU-0063794 on Akt in CTLs over an 18 h period. KU-0063794 caused a rapid and 

sustained loss of mTORC1 activity and mTORC2 mediated Akt S473 

phosphorylation (Fig. 8h). The impact of KU-0063794 on Akt T308 phosphorylation, 

however, was biphasic. The rapid de-phosphorylation of Akt S473 in KU-0063794 

treated cells was thus initially accompanied by Akt T308 de-phosphorylation and loss 

of Akt catalytic activity as monitored by the loss of phosphorylation of the Akt 

substrate: T24 and T32 in Foxo1 and 3A, respectively. Hence treatment of CTLs with 

an mTOR catalytic inhibitor causes a rapid loss of Akt activity. However, the loss of 

Akt T308 phosphorylation in KU-0063794-treated CTLs was transient and Akt T308 

phosphorylation was restored after approximately 6 h of drug treatment (Fig. 8h). 

This Akt T308 re-phosphorylation was paralleled by restoration of Akt activity as 

judged by corresponding re-phosphorylation of Foxo1/3A T24/32. At the 18 h time 

point, Akt T308 phosphorylation and Akt activity was enhanced compared with the 

control CTLs despite the absence of any detectable phosphorylation of Akt on S473. 

Akt activity in CTLs is thus normally dependent on mTORC2-mediated 

phosphorylation of Akt S473. However, in mTOR inhibitor-treated CTLs there was 

reprogramming event such that Akt activity became independent of mTOR controlled 

Akt S473 phosphorylation. The importance of Akt S473 phosphorylation in T cells 

thus depended on cellular concentrations of PtdIns(3,4,5)P3. If these are high then 

phosphorylation of Akt S473 was not required for Akt T308 phosphorylation, or 

catalytic activity (Supplementary Fig. 3).  

These result argued that mTORC1 control of PtdIns(3,4,5)P3 dominated mTORC2 

control of Akt in CTLs, such that catalytic inhibitors of mTOR did not effectively 

disrupt Akt activity. In this context, inhibition of Akt in CTLs caused re-expression of 

Foxo-regulated genes
37

. However, there was no re-expression of Foxo-regulated 

genes in KU-0063794-treated CTLs (Table 2) supporting the conclusion that mTOR 
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inhibitors did not disrupt Akt signaling in CTLs. Moreover, we found no difference in 

the transcriptional changes induced in CTLs by rapamycin inhibition of mTORC1 

versus mTOR catalytic inhibition with KU-0063794 (Fig. 8i). A comparison of the 

effects of rapamycin and KU-0063794 on the CTL proteome using quantitative mass 

spectrometry also found no major difference between the effects of rapamycin and 

KU-0063794. (Supplementary Fig. 4) Hence, the mTOR catalytic inhibitor blocked 

mTORC1 and mTORC2 activity but there was no discernable impact of additional 

(on or off target) effect of this inhibitor on the T cells compared to loss of mTORC1 

activity alone. 

All proteomic data presented are available in the Encyclopedia of Proteome Dynamics 

(http://www.peptracker.com/epd), to maximize accessibility to the scientific 

community (Supplementary Fig. 5).  
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Discussion  

In this study we have characterized the CTL proteome, mapping the abundance and 

isoform/orthologue expression of more than 6800 proteins. These proteomic data are 

available in an online, searchable database, the Encyclopedia of Proteome Dynamics 

(http://www.peptracker.com/epd). The abundance of some CTL proteins was striking: 

granzymes comprised collectively 1-2% of the CTL proteome and 9% of the CTL 

proteome comprised glycolytic enzymes. The threshold of molecules needed for 

function is often unknown but there is undoubtedly a new perspective to considering 

the biological relevance of changes in protein expression when protein abundance is 

factored into the equation. E.g. a 100-fold decrease in granzyme B and perforin would 

reduce granzyme B to ~10
5
 molecules/CTL and perforin to approximately ~100 

copies/CTL; a case in which granzyme B is still abundant whereas perforin seems 

limiting. In another example, CD25, the IL-2 receptor  chain is expressed ~100-fold 

excess to the IL-2 receptor /c subunits. CD25 levels could decrease 10-fold without 

impacting on high affinity IL-2 receptor expression. Knowledge of protein copy 

number is thus invaluable information for a full understanding of cell function. 

Information about protein isoform expression can also give new ideas about cellular 

control mechanisms. E.g. CTL express the pyruvate kinase M1 and M2 (PKM1/2) 

isoforms. However, PKM2 dominates in terms of abundance at >10
7
 molecules/CTL 

versus <10
5
 molecules/CTL for PKM1. The PKM1/2 isoforms both use 

phosphoenolpyruvate as a substrate during glycolysis but PKM2 can also function as 

a protein kinase for STAT3 and MEK5
38

 and is co-activator for HIF1 mediated 

transcription
39

. The quantity of PKM2 in CTL (>10
7
/cell) permit this enzyme to have 

multiple roles as a transcriptional and metabolic regulator.  

One key insight herein is that mTORC1 is not a global regulator of protein output in 

CTL but rather selectively shapes the CTL proteome by controlling expression of a 

small (<10%) subset of metabolic, effector and adhesion molecules that define CTL 

identity. mTORC1 repressed and stimulated expression of equal numbers of proteins 

indicative that it simultaneously controls protein production and degradation. The 

selectivity of mTORC1 control of CTL proteomes was remarkable as was the finding 

that there was no considerable difference to CTL of inhibiting mTORC1 versus 

combined inhibition of mTORC1 and mTORC2. This suggests that mTORC1 has a 
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dominant role in CTL compared with mTORC2. Genetic strategies that selectively 

delete either mTORC1 or mTORC2 have shown quite different roles for these two 

complexes in T cells
8
. In particular loss of mTORC2 complexes as a consequence of 

Rictor deletion prevents Akt S473 phosphorylation and regulates Akt mediated 

nuclear exclusion of Foxo transcription factors. We show that mTORC2 does control 

Akt S473 phosphorylation in T cells. However, we also discovered that mTORC1 

repressed the accumulation of PtdIns(3,4,5)P3 in CTL. Specific mTORC1 and mTOR 

inhibitors thus cause CTL to accumulate very high levels of PtdIns(3,4,5)P3 and 

reprogram how they regulate Akt such that activation of Akt becomes independent of 

Akt S473 phosphorylation and mTORC2. These results inform that one cannot predict 

the biological impact of the combined catalytic inhibition of mTORC1 and mTORC2 

from genetic modifications that individually disrupt mTORC1 or mTORC2 

complexes. In this context, although previous studies have reported mTORC1 

feedback control of Akt in non-lymphoid cells
14,15,16

, the magnitude of the 

potentiation of T cell PtdIns(3,4,5)P3-levels by rapamycin, an immunosuppressant, 

was remarkable and not intuitive because PtdIns(3,4,5)P3 is normally thought of as a 

positive regulator of T cells. However, constitutive activation of PI(3)K p110 in 

humans results in an immunodeficiency syndrome (activated PI(3)K syndrome). 

Hence, hyper-activation of PtdIns(3,4,5)P3 signaling pathways in T cells is effectively 

immunosuppressive
40,41

. The hyper-production of PtdIns(3,4,5)P3 may be part of the 

mechanism whereby mTORC1 inhibitors suppress T cell immunity. This study thus 

demonstrates the power of unbiased proteomic analysis to generate a new 

understanding of mechanisms of drug action.  

Previous studies have suggested that mTORC1 phosphorylates and targets for 

degradation a negative regulator of PI(3)K, GRB10
14,15. We show that GRB10 is not 

expressed in CTL. However, mTORC1 controls the expression of PTEN, another key 

negative regulator of PI(3)K pathways. In this respect, it has been described that 

mTORC1 mediated phosphorylation and degradation of the adapter protein IRS2 acts 

to restrain AKT activity in non-lymphoid cells
16

. mTORC1 is shown herein to control 

IRS2 amounts in T cells and to control another key adaptor protein DOCK1. In this 

respect the increased expression of DOCK1 and IRS2 in rapamycin-treated CTLs 

indicates that inhibition of mTORC1 would promote the signaling pathways 

controlled by these molecules. mTOR thus has cell type specific actions and to fully 



15 

 

understand its role it will necessitate analysis of its function in different leucocyte 

populations. 
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Accession numbers. 

All of the label-free .raw MS and MaxQuant search output data have been deposited 

to the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) 

via the PRIDE partner repository with the dataset identifier PXD002928 . 

The microarray data are available in the Gene Expression omnibus (GEO) database 

(http:/www.ncbi.nlm.nih.gov/geo) under the accession number GSE70925. 

 

Acknowledgements. 

We thank present and past colleagues in the Cantrell Group for advice and discussion, 

particularly C. Feijoo-Carnero for help with microarray analysis. We thank T. Ly for 

help with peptide fractionation using hSAX. We thank D. Lamont and team of the 

mass spectrometry facility at the College of Life Sciences, University Dundee and the 

Finnish DNA microarray Centre at the Centre for Biotechnology (Turku, Finland). 

Supported by the Wellcome Trust (093713/Z/10/A to J.L.H., 073980/Z/03/Z and 

105024/Z/14/Z to A.I.L., 065975/Z/01/A and 097418/Z/11/Z to D.A.C.). J.L.H. was 

supported by a Wellcome Trust PhD Studentship. D.A.C. and A.I.L. are Wellcome 

Trust Principal Research Fellows. 

 

Author contributions. 

J.L.H., designed and performed the proteomic and transcriptomic experiments, most 

other experiments; K.E.A., performed PIP3 measurements; L.V.S., performed glucose 

uptake assay; K.M.G., performed lactate output assay; A.B.M., Encyclopedia of 

Proteome Dynamics; P.T.H. and L.R.S., experimental design for PtdIns(3,4,5)P3 

measurements; A.I.L., experimental design; D.A.C. designed experiments and wrote 

the manuscript with input from J.L.H. 

 

 



17 

 

Competing Financial Interests. 

The authors declare no competing financial interests. 

 

Corresponding author. 

Correspondence to Doreen A. Cantrell.



18 

 

Figure 1: The cytotoxic T cell proteome.  

(a) Scatter plots of estimated protein copy numbers using the proteomic ruler 

approach show high reproducibility of protein intensities and ~94% of identified 

proteins are detected in all three biological replicates. R
2 

= coefficient of 

determination. (b) CTL proteins ranked by abundance as estimated by mean iBAQ 

intensities and plotted against the cumulative protein abundance. The proteomic ruler 

protocol was used to quantify mean protein copy number and relative abundance 

based on iBAQ intensities
17

. The 12 most abundant proteins contribute 25% of the 

CTL proteome; 64 and 249 proteins contribute to 50% and 75% of the CTL proteome. 

(c) Histogram of log-transformed mean protein copy number quantified using the 

proteome ruler. Protein expression levels span nearly seven orders of magnitude. 

Intensity quartiles are depicted in different colors and enriched KEGG pathways 

(p<0.01, Bonferroni corrected) are displayed above each quartile. The contribution of 

the most abundant KEGG pathways to the total CTL proteome in terms of molecules 

or mass is shown in the table. Mean iBAQ values and copy numbers are based on 

three biological replicates. 
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Figure 2: Comparison of the abundance of key CTL proteins. 

Histograms of log-transformed mean estimated copy numbers of CTL proteins using 

the proteomic ruler methodology. Quantification accuracy based on number of 

detected peptides, fraction of unique/Razor peptides to total peptides and theoretically 

observable peptides. (a) Key nutrient transporters, (b) CTL effector molecules, (c) 

transcription factors, (d) tyrosine kinases and phosphatases involved in TCR and IL-2 

receptor signaling, (e) IL-2 receptor subunits and associated tyrosine kinases. Protein 

= protein name, copies = Mean estimated copy number/cell, CV = coefficient of 

variation, QA = quantification accuracy. Mean copy numbers and CV are based on 

three biological replicates. Copy numbers for all CTL proteins can be assessed by 

using the Encyclopedia of Proteome dynamics (http://www.peptracker.com/epd)  
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Figure 3: Comparison of the CTL transcriptome and proteome. 

(a) Scatter plots show mean Affymetrix microarray transcript intensities plotted 

against the corresponding estimated mean copy numbers for CTL proteins. The data 

show a moderate overall correlation of protein abundance with transcript abundance 

R
2 

= coefficient of determination of 0.43. (b, c) Discordance of mean transcript and 

protein levels for (b) transcription factors T-bet and Eomes and (c) IL-2 receptor 

subunit  vs  and c. (d, e) Tight control and correlation of transcript and protein 

levels for subunits of ribosome protein complexes (d) or granzyme isoforms (e). (b) 

P-values determined by two-sided, equal variance t-test on transcript intensities or 

protein copy numbers, respectively. All data are based on three biological replicates. 
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Figure 4: The mTORC1 regulated CTL proteome. 

(a) Immunoblot analysis of mTORC1/2 substrates in P14 TCR transgenic CTLs 

cultured with IL-2/IL-12 ± 48 h treatment with either rapamycin or KU-0063794. (b) 

Protein synthesis was examined by monitoring 
3
H-Met incorporation into nascent 

proteins in CTLs cultured in IL-2/IL-12 and treated with rapamycin for the indicated 

time. (c) Cellular protein content of CTLs ± 48 h rapamycin. (d, e,) Volcano plots 

showing fold changes in proteins vs. log-transformed P-values from mass 

spectrometry analysis of CTLs ± 48 h rapamycin. (d) Total proteins. Known 

rapamycin sensitive proteins perforin and L-selectin are highlighted. (e) CTL effector 

molecules. (f) IFN- secretion by CTLs ± 48 h rapamycin measured by ELISA. (h) 

Immunoblot analysis of T-bet in CTLs ± 48 h rapamycin. (h, i) Validation of up-

regulated proteins: (h) ELISA of shed CD62L in cell supernatants prepared from 

CTLs ± 48 h rapamycin. (i) Immunoblot analysis of IRS2 in CTLs ± 48 h rapamycin. 

(a, g, i): representive immunoblots of at least three biological replicates. (b, c, f, h): 

individual data points and means are shown. P-values shown determined by (b): one-

way ANOVA (Holm-Sidak) vs. DMSO as control on non-normalized data; (c, f, h): 

two-tailed Student’s t-test. Data based on three (b, f, h) or four (c) biological 

replicates. *P<0.05, **P<0.01, ***P<0.001. (d, e,): Each data point represents mean 

fold change of three biological replicates vs. P-value determined by two-tailed, 

unequal variance t-test; measurements based on three biological replicates. 
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Figure 5: mTORC1 regulation of cellular pathways. 

(a, b, c) Volcano plots of down regulated KEGG pathways in rapamycin treated 

CTLs: (a) glycolysis and glucose transporters, (b) terpenoid backbone and steroid 

biosynthesis with rate limiting enzyme HMGCR highlighted, (c) cytoplasmic subunits 

of ribosomes and aminoacyl-tRNA biosynthesis. (d, e) Volcano plots of up-regulated 

KEGG pathways in rapamycin treated CTLs: (d) oxidative phosphorylation, (e) 

mitochondrial subunits of ribosomes and aminoacyl-tRNA biosynthesis. Each data 

point represents mean fold change of three biological replicates vs. P-value 

determined by two-tailed, unequal variance t-test; measurements based on three 

biological replicates. 

 

Figure 6: Comparison of the mTORC1 controlled transcriptome and proteome 

in CTL. 

(a) Plot showing mean microarray probe intensities from RNA isolated from CTLs 

cultured in IL-2/IL-12 ± 48 h rapamycin. mTORC1 inhibition increased levels of 220 

transcripts and decreased 226 transcripts (total of 8198 expressed transcripts). 

Examples of transcriptional (b-d) and non-transcriptional (e-g) regulation of protein 

expression by mTORC1. (b) Glycolytic enzymes and glucose transporters (c) 

terpenoid backbone and steroid biosynthesis pathways (SREBP1/2 targets), (d) 

cytolytic effector molecules (single letters indicate granzyme isoforms, PRF = 

Perforin; note different scaling of axes), (e) cytoplasmic and mitochondrial ribosomal 

subunits, (f) oxidative phosphorylation (OxPhos), (g) proteins encoded by mRNA 

containing 5′-TOP containing mRNA (as reported
10

). (b-g) P-values determined by 

Mann-Whitney U test vs. total transcriptomic (n=5516) or proteomic (n=6641) 

dataset, respectively. Horizontal values on the top indicate P-values determined from 

transcriptomic analysis, vertical values at the right for proteomic analysis. Number of 

transcript-protein pairs for each pathway given in brackets. All data points are based 

on three biological replicates and represent the mean fold change on transcript or 

protein level, respectively. 
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Figure 7: Selective control of CTL metabolism by mTORC1. 

(a) Volcano plot representation of mean fold changes vs. log-transformed P-values of 

SLC family members in control versus rapamycin treated CTLs. (b, c) Effects of 

mTORC1 inhibition in CTLs on glutaminolysis: (b) Volcano plot of changes of 

glutaminolytic proteins depicted in control versus rapamycin treated CTLs. (c) 

Glutaminolysis rates in CTLs ± 48 h rapamycin as quantified by measuring the 

formation of 
14

CO2 derived from radiolabelled L-glutamine. (d) Comparison of the 

expression of glycolytic (blue) and OxPhos (red) molecules in control versus 

rapamycin treated CTLs. (e) Pie charts showing the relative contribution of glycolytic 

pathway to overall CTL mass in control and rapamycin treated CTLs. (f) KEGG 

pathway analysis of highest intensity quartile in CTLs with enriched pathways (P< 

0.01). (g, h) Metabolic flux analysis of control versus rapamycin treated CTL: (g) 

oxygen consumption and (h) extracellular acidification rate of DMSO and rapamycin 

trated CTL. Oligomycin (oligo.), 2,4-dinitrophenol (DNP), antimycin A (AA) and 

rotenone (rot.) were added at indicated time points. (i) Glucose uptake levels in 

control vs. rapamycin treated CTLs. (j) Effects on decreased glucose flux on lactate 

output by CTLs. (a, b, d): Each data points represents mean fold change of three 

biological replicates; P-values determined by two-tailed, unequal variance t-test, 

measurements based on three biological replicates. (c, i, j): individual data points and 

means are shown. P-values for non-proteomic data (c, i) determined by paired t-test 

on non-normalized data. *P<0.05. (g, h) Data shown are mean ± SD. Data based on 

two (g, h), three (a-f, j) or five (i) biological replicates. 
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Figure 8: mTORC1 represses PIP3 production and controls the mTORC2 

requirement for activation of AKT. 

(a) Immunoblot analysis of PTEN expression in CTLs cultured ± 48 h rapamycin. (b) 

HPLC-MS based analysis of PtdIns(3,4,5)P3 levels in control IL-2/IL-12 maintained 

CTLs (DM) and CTLs treated with PI(3)K p110δ inhibitor IC-87114 (IC, 1 h) and 

rapamycin for the indicated times. (c) Immunoblot analysis of Akt T308 and S473 

phosphorylation levels in CTLs ± 48 h rapamycin. (d, e) The data show immunoblots 

of Akt T308 phosphorylation in control and mTORC1 inhibited CTLs treated with (d) 

IC-87114 or (e) AKTi1/2. (f) Immunoblot analysis of PTEN expression in CTLs 

cultured ± 48 h rapamycin or KU-0063794. (g) HPLC-MS based analysis of 

PtdIns(3,4,5)P3 levels in control CTLs and CTLs treated with KU-0063794 for 

indicated durations. (h) Immunoblot analysis of Akt T308, Akt S473, FOXO1/3A 

T24/T32 phosphorylation and phosphorylation of the mTORC1 substrates S6K T389 

and 4EBP1 S65 in CTLs treated with KU-0063794 for the indicated times. (i) Scatter 

plot depicting correlation of mean (n=3) fold changes in transcript expression from 

Affymetrix microarray analysis of control CTLs vs CTLs treated with rapamycin (x-

axis) or KU-0063794 (y-axis). Immunoblots are representative of at least three 

biological replicates. (b, g) Individual data points and means are shown. P-values are 

determined by one-way ANOVA (Holm-Sidak) vs. DMSO (DM) as control. *P<0.05, 

**P<0.01. Data based on biological triplicates. 
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Tables. 

 

rank protein name gene 

name 

copy 

number 

% cum. 

% 

1 Histone H2B Hist1h2bb 7.9 × 10
7
 5 5 

2 Histone H4 Hist1h4a 6.1 × 10
7
 4 8 

3 Actin Actb 5.0 × 10
7
 3 11 

4 Thymosin beta-4 Tmsb4x 4.7 × 10
7
 3 14 

5 Cofilin-1 Cfl1 3.0 × 10
7
 2 15 

6 Histone H2A Hist1h2ab 3.0 × 10
7
 2 17 

7 Peptidyl-prolyl cis-trans 

isomerase A 

Ppia 2.8 × 10
7
 2 19 

8 Alpha-enolase Eno1 2.5 × 10
7
 1 20 

9 Vimentin Vim 2.4 × 10
7
 1 22 

10 Granzyme B Gzmb 2.2 × 10
7
 1 23 

11 Profilin-1 Pfn1 2.1 × 10
7
 1 24 

12 60S acidic ribosomal protein 

P2 

Rplp2 2.1 × 10
7
 1 25 

13 Histone H3.2 Hist1h3b 1.8 × 10
7
 1 26 

14 Histone H1.2 Hist1h1c 1.7 × 10
7
 1 27 

15 Phosphoglycerate kinase 1 Pgk1 1.7 × 10
7
 1 28 

16 Elongation factor 1-alpha 1 Eef1a1 1.5 × 10
7
 1 29 

17 L-lactate dehydrogenase A 

chain 

Ldha 1.5 × 10
7
 1 30 

18 Eukaryotic translation 

initiation factor 5A-1 

Eif5a 1.4 × 10
7
 1 31 

19 Fructose-bisphosphate aldolase 

A 

Aldoa 1.4 × 10
7
 1 32 

20 Heat shock cognate 71 kDa 

protein 

Hspa8 1.3 × 10
7
 1 32 

 

Table 1: 

The 20 most abundant CTL comprising nearly a third of all proteins in CTL are 

shown. %: percentage of protein relative to total cellular protein pool; cum. %: 

cumulative relative abundance of all proteins up to that rank.  
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Gene Rapamycin KU-0063794 AKTi1/2 

Klf2 0.93 1.3 5.8 

Il7r 0.88 0.95 2.2 

Ccr7 1.9 1.3 3.1 

S1pr1 0.91 0.89 2.6 

 

Table 2: 

Effects of rapamycin vs. KU-0063794 vs. AKTi1/2 inhibition on key Foxo regulated 

genes in CTL as determined by microarray analysis. Mean fold changes of microarray 

transcript intensity of inhibitor treated vs. respective controls are shown. AKTi1/2 

data obtained from previous study
37

. 
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Online Methods 

 

Mice. 

All mice used were bred and maintained under specific pathogen-free conditions in 

the Biological Resource Unit at the University of Dundee. The procedures used were 

approved by the University Ethical Review Committee and authorised by a project 

licence under the UK Home Office Animals (Scientific Procedures) Act 1986. P14 

TCR transgenic mice have been described previously
42

. 

 

Cell culture. 

CTLs were generated as prescribed previously
36

. In brief, lymphocytes isolated from 

spleens of P14 TCR-transgenic mice (for proteomics and microarray experiments: 

female mice only, 8–10 weeks old; other experiments: female and male mice, 7-18 

weeks old) were activated for 48 h with 100 ng/mL of soluble antigenic peptide gp33-

41, 20 ng/mL IL-2 (Proleukin) and 2 ng/mL IL-12 (R&D systems) at 37 °C. Cells 

were then cultured for another 96 h in 20 ng/mL IL-2 and 2 ng/mL IL-12, resulting in 

>98% pure CD8
+
 T cell populations. Where indicated, cells were treated with the 

following inhibitors: 20 nM rapamycin (EMD Millipore), 1 M AKTi1/2 (EMD 

Millipore), 10 M IC-87114 (synthesized in house) or 1 M KU-0063794 (Tocris). 

DMSO was used as a solvent and vehicle control. 

 

Immunoblotting. 

Cells (20 × 10
6
) were lysed in RIPA buffer (100 mM HEPES, pH 7.4, 150 mM NaCl, 

1% NP40, 0.1% SDS, 0.5% sodium deoxycholate, 10% glycerol, 1 mM EDTA, 1 mM 

EGTA, 1 mM TCEP (Pierce), protease and phosphatase inhibitors (Roche). Lysates 

were sonicated in a Branson Digital sonicator on ice, centrifuged (4 °C, 16,000 × g for 

10 min). Samples were adjusted to 1× LDS sample buffer (life technologies) and 25 

mM TCEP was added prior boiling for 10 min. Each lane was loaded with the 
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equivalent of 140,000 CTLs and separated by SDS-PAGE (life technologies NuPAGE 

precast gels or Bio-Rad Mini-PROTEAN tetra cell system) and transferred to 

nitrocellulose membranes (Whatman). Blots were probed with the following 

antibodies: 4EBP1 p-S37/S46 (Cell Signaling Technology (CST) #2855), 4EBP1 -

pS65 (CST #9451), 4EBP1 (CST #9452), S6K p-T389 (CST #9239), S6K (CST 

#9202), Akt p-T308 (CST #4056), Akt p-S473 (CST #4058), SMC1 (Bethyl 

Laboratories, A300-055A), T-bet (eBioscience 14-5825), IRS2 (CST #4502), PTEN 

(Santa Cruz sc-7974), Foxo1/3A p-T24/32 (CST #9464), FOXO1 (CST #9454). X-ray 

films (Konica) were used to monitor chemiluminescence reactions catalysed by HRP-

conjugated secondary antibodies. All immunoblots shown are representative of 3 or 

more biological replicates.  

 

Glucose uptake. 

Glucose measurements were performed as described previously
13

. Briefly, 10
6
 CTLs 

were suspended in 400 L glucose-free media containing 0.5 Ci/ml 2-deoxy-d-[1-

3
H]glucose ([

3
H] 2-DG; GE Healthcare) and incubated for 3 min. Cells were pelleted, 

washed, and lysed overnight with 200 L of 1 M NaOH, and the incorporated 
3
H 

radioactivity was quantified via liquid scintillation counting. Measurements were 

performed in technical triplicates per condition. 

 

Lactate measurements. 

Lactate measurements were performed as described previously
13

. Briefly, 1 × 10
6
/mL 

CTLs were cultured for 4 h in RPMI 1640 containing 10% dialyzed fetal calf serum, 

cells were spun and the supernatants were collected. Lactate concentrations in the 

supernatants were quantified using an LDH (lactate dehydrogenase)-based enzyme 

assay, monitoring the emergence of NADH/H
+
 through increased absorption at 340 

nm (the reaction contained 320 mM glycine, 320 mM hydrazine, 2.4 mM NAD
+
, and 

3 U/mL LDH). A standard curve was generated, and the concentration of lactate in 

the supernatant added to this reaction was calculated. 
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ELISA. 

ELISA kits (eBioscience) for CD62L and IFN- were used to determine the effects of 

5 h rapamycin treatment on the secretion of these proteins. Experiments were 

performed in biological triplicate according to the manufacturer’s instructions 

 

Seahorse metabolic flux analyser. 

A XF24 cell culture microplate was coated with 50 L/well of a 22.4 g/mL Cell-

Tak, 0.1 M NaHCO3, pH 8.0 solution for 30 min. The plate was washed twice with 

sterile H2O and air dried at 22 °C overnight. A XF24 cartridge was equilibrated with 1 

mL Seahorse calibrant solution and equilibrated at 37 °C overnight. Unbuffered 

RPMI media without FBS was prepared as per manufacturer’s instruction and sterile 

filtered. 150,000 CTL/well were used in the experiments. The manufacturer’s 

recommended settings for an oxygen consumption rate of 200-500 pmol/min were 

used (3 minutes mixing, 2 minutes waiting, 3 minutes measuring). A mitochondrial 

stress test was performed, sequentially using oligomycin, DNP and 

rotenone/antimycin to affect the ATP synthase and electron transport chain. Three 

measurements were taken for the baseline OCR and ECAR and each inhibitor 

treatment giving a total of 12 measurements. The average for each data point was 

calculated from at least 3 wells and 2 biological replicates were performed. 

 

Glutaminolysis assay. 

Glutaminolytic rates were measured as described previously
43

. 1 × 10
6
 cells per data 

point were harvested and resuspended in 1 mL fresh glutamine free media containing 

appropriate cytokines and required drugs. The cells were transferred into 7 mL vials 

with a PCR tube containing 50 L 1 M KOH glued to the inner side wall to collect 

produced CO2. 50 L of a 20% [U-
14

C]-glutamine (equivalent to 0.5 Ci [U-
14

C] 

glutamine) were added to each sample and the vial closed with a screw cap with 

rubber septum. Samples were then incubated for 1 h at 37 °C and the assay was 

stopped by injecting 100 L 5M HCl through the septum with a Hamilton syringe. 
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The vials were kept at 22 °C overnight to trap the released CO2. The KOH solution in 

the PCR inside the glass vials was then transferred to scintillation vials, 3 mL of 

Optiphase HiSafe 3 was added and the samples were analysed in a scintillation 

counter. All measurements were performed in technical triplicates.  

 

Mass spectrometry measurements of inositol lipids. 

Mass spectrometry was used to measure inositol lipid concentrations essentially as 

previously described
44

, using a QTRAP 4000 (AB Sciex) mass spectrometer and 

employing the lipid extraction and derivitization method described for cultured cells, 

with the modification that 1 ng C17:0/C16:0 PtdIns(3,4,5)P3 internal standard was 

added to primary extracts and that final samples were dried in a speedivac 

concentrator rather than under N2. Measurements were conducted, in triplicate per 

experiment, on 1 × 10
6
 cells per sample. The HPLC-MS peak area of the ISD was 

used as a reference to calculate absolute numbers of PtdIns(3,4,5)P3 per cell in each 

sample by using the respective sample peak areas. 

 

 

Sample lysis and in-solution digest for mass spectrometry (label-free 

quantification). 

25 × 10
6
 CTLs treated with either DMSO or rapamycin were harvested in a 50 mL 

falcon tube and washed three times in cold HBSS and transferred into a 2.0 mL 

protein LoBind Eppendorf tube. Cells were lysed in 0.5 mL urea lysis buffer (8 M 

urea, 100 mM Tris pH 8.0, protease and phosphatase inhibitors) and vigorously mixed 

for 15 min at 22 °C. The samples were then sonicated with a Branson digital sonicator 

before vigorously mixed for another 15 min. The protein concentration was 

determined by BCA assay as per manufacturer’s instructions before DTT at a working 

concentration of 10 mM was added. Lysates were incubated at 30 °C for 30 min. 

Iodoacetamide was added to a working concentration of 50 mM and lysates were 

incubated in the dark at 22 °C for 45 min. Lysates were diluted with digest buffer to 4 
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M urea. LysC was added to the samples in a 50:1 (protein:LysC) ratio and the 

samples were then incubated at 30 °C overnight. The samples were then split in half. 

One half was diluted to 0.8 M urea with digest buffer and Trypsin was added in a 50:1 

ratio. The other half was kept a LysC fraction. The samples were then incubated at 30 

°C for a further 8 h. Samples were adjusted to 1% TFA prior to desalting. C18 Sep-

Pak cartridges were washed twice with 1 mL elution buffer and equilibrated twice 

with 1 mL wash buffer before the acidified peptide samples were loaded. The flow 

through was loaded again to ensure maximal peptide binding. The peptide loaded 

cartridges were washed three times with 1 mL washing buffer. Peptides were eluted 

into 2 mL Eppendorf Protein LoBind tubes by 2 subsequent elutions with 600 L 

elution buffer each. The eluted samples were reduced to dryness in a vacuum 

concentrator. 

 

Strong anion exchange chromatography. 

Samples were separated via hSAX chromatography as described previously
3
. Samples 

were resuspended in 210 L SAX sample buffer (10 mM sodium borate, pH 9.3, 20% 

acetonitrile) and the pH was readjusted to pH 9.3 with 1 M NaOH if necessary. 

Samples were injected and peptides separated by a Dionex Ultimate 3000 HPLC 

system equipped with an AS24 strong anion exchange column. The following buffers 

were used for the separation of peptides: 10 mM sodium borate, pH 9.3 (Buffer A) 

and 10 mM sodium borate, pH 9.3, 500 mM NaCl (Buffer B). An exponential elution 

gradient starting with Buffer A was used to separate the peptides into 12 fractions of 

750 L which were desalted prior to analysis via LC-MS/MS. 

 

Sample lysis, size exclusion chromatography and in-solution digest for mass 

spectrometry (SILAC-based quantification). 

CTLs were cultured in SILAC media as described previously
45

. In brief, 50 × 10
6
 

CTLs grown in ‘light’ SILAC media and treated with either rapamycin or KU-

0063794 were mixed with 50 × 10
6
 CTLs grown in ‘heavy’ SILAC treated with 

DMSO and washed twice with ice cold HBSS. Cells were lysed and fractionated into 
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five different subcellular fractions (cytoplasmic, membrane, soluble nuclear, 

chromatin-bound nuclear and cytoskeletal fractions) using a Subcellular Fractionation 

Kit for Cultured Cells (Pierce) following the manufacturer’s instructions for a 200 L 

packed cell volume. Protein contents for each fraction were measured by BCA assay. 

300 g of each subcellular fraction were used for the chloroform-methanol 

precipitation. Samples were adjusted to a final concentration of 2% SDS, 10 mM 

TCEP and 20 mM NEM in 1 mL and heated to 65 °C for 10 min to denature proteins. 

Samples were precipitated using a chloroform-methanol method and air dried. The 

precipitated cytoplasmic, membrane, nuclear and chromatin bound nuclear fraction 

were resuspended in 60 L SEC sample buffer and separated by a mAbPacSEC 

column (Dionex) using a 0.2% SDS, 100 mM NaCl, 10 mM sodium phosphate buffer, 

pH 6.0. The flow rate was 0.2 mL min
−1

 and 8 fractions of 200 L were collected into 

Protein LoBind 1 mL 96-deep well plates (Eppendorf). TEAB was added to the SEC 

fractions to a final concentration of 0.1 M. Trypsin was added in a 50:1 

(protein:trypsin) ratio. The unseparated cytoskeletal fraction was diluted with digest 

buffer to a urea concentration of 1 M. Trypsin was added in a 50:1 (protein:trypsin) 

ratio. All samples were incubated at 37 °C overnight. Detergents were removed using 

detergent removal 96-well spin plates (Pierce). The detergent free flow through and 

the cytoskeletal fraction were then kept for desalting as described above and further 

sample processing. 

 

Liquid chromatography mass spectrometry analysis (LC-MS/MS). 

Samples from desalting were resuspended in 5% formic acid and 1 g of peptides was 

used for analysis. A Dionex RSLCnano HPLC was used for the peptide 

chromatography. A 5 mm PepMap-C18 pre-column with an inner diameter of 0.3 mm 

was used and a 75 m x 50 cm PepMap-C18 column was used for the subsequent 

chromatography. The mobile phase consisted of 2% acetonitrile + 0.1% formic acid 

(solvent A) and 80% acetonitrile + 0.1% formic acid (solvent B). A constant flow rate 

of 300 nL/min was used and the linear gradient increased from 5% to 35% solvent B 

over a runtime of 156 minutes. The eluted peptides were injected into a Velos 

Orbitrap mass spectrometer (Thermo) through a nanoelectrospray emitter. A typical 
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‘Top15’ acquisition method was used. The primary mass spectrometry scan (MS1) 

was performed at a resolution of 60,000. The aforementioned top 15 most abundant 

m/z signals from the MS1 scan were selected for subjected for collision-induced 

dissociation and MS2 analysis in the Orbitrap mass analyzer at a resolution of 17,500. 

  

Data analysis for mass spectrometry data. 

The data were processed, searched, and quantified using the MaxQuant software 

package version 1.5.0.0 as described previously
46

, using the default settings and 

employing the mouse Uniprot database from April 2014 and the contaminants 

database supplied by MaxQuant. The following settings were used: two miscleavages 

were allowed; fixed modification was carbamidomethylation on cysteine; enzyme 

specificities were Trypsin and/or LysC were applicable; variable modifications 

included in the analysis were methionine oxidation, deamidation of glutamine or 

asparagine, N-terminal pyroglutamic acid formation, and protein N-terminal 

acetylation. Default MaxQuant settings included a mass tolerance of 7 ppm for 

precursor ions, and a tolerance of 0.5 Da for fragment ions. A reverse database was 

used to apply a maximum false positive rate of 1% for both peptide and protein 

identification. This cut-off was applied to individual spectra and whole proteins in the 

MaxQuant output. The match between runs feature was activated with an allowed 

time window of 2 minutes. All proteins were quantified on the basis of unique and 

Razor peptides with the requantification feature enabled. iBAQ intensities were 

calculated by dividing the summed peptide intensities for each protein by the number 

of theoretically observable peptides. The MaxLFQ algorithm
47

 was used to assess fold 

changes between control and rapamycin treated CTLs. Estimated abundances und fold 

changes were calculated separately for LysC-only or LysC/Trypsin double-digested 

samples. Abundances or fold changes stated for each biological replicate are the mean 

of log2-transformed LysC-only and double-digested samples. Further down-stream 

analysis was performed using Microsoft Excel, Perseus 1.5.1.6 (developed by the 

Matthias Mann lab), SigmaPlot 12.5 and the language R (version 3.1.3, using R 

Studio 0.98.11.03). An initial pilot proteomics experiment was performed to 

determine fold-changes of known rapamycin sensitive proteins perforin
13

 and L-

selectin
6
 and a total of three biological replicates was required to determine these 
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changes with a P-value of ≤ 0.05 (two-tailed, unequal variance t-test). The same two-

tailed, unequal variance t-test without further adjustment was used to calculate 

significance of all fold changes in proteomic experiments. For SILAC based 

proteomics, SILAC ratios obtained for each subcellular fraction were weighted by the 

contribution of the respective subcellular fraction to the overall cellular protein 

content and by the contribution of reported SILAC ratio counts for each subcellular 

fraction ratios to the number of total SILAC ratio counts for each experiment. Log-

normalized SILAC ratios were then used to determine statistical significance (p ≤ 

0.01 as determined two-tailed, unequal variance t-test). Pathway analyses were 

performed using the Database for Annotation, Visualisation and Integrated Discovery 

(DAVID) bioinformatics tools based on Kyoto Encyclopedia of Genes and Genomes 

(KEGG)
48

. A plugin for Perseus was used to calculate protein copy numbers using the 

proteomic ruler
17

: Relative protein abundance for each protein group was calculated 

by dividing the iBAQ protein intensity for the respective protein group by the sum of 

iBAQ intensities of all protein groups in each dataset. Total histone numbers in a 

diploid murine cell (~2.2 × 10
8
) were calculated from the size of the mouse genome 

and assigned to the summed relative abundance of all histones with the control CTLs 

(~13%) as inferred by the relative protein intensities and subsequently used to 

estimate copy numbers for proteins within the dataset. Protein groups were assigned 

“high” (min 8 peptides detected, min 75% all peptides unique+razor, min 3 

observable peptides per 100 amino acid), “medium” (min. 3 peptides detected, min 

50% all peptides unique+razor, min 2 observable peptides per 100 amino acid) or 

“low” (all other) quantification accuracy for both LysC and LysC-Trypsin double-

digest derived peptides and averaged, resulting in five classification from 

“high”/”high” to “low”/”low”. 

 

Affymetrix GeneChip mouse genome array analysis. 

CTLs were treated either DMSO (control) or rapamycin or KU-0063794 for 48 h in 

triplicate as described above. RNA was extracted with the RNeasy RNA purification 

minikit (QIAGEN) according to the manufacturer’s specifications. Microarray 

analysis was carried out by the Finnish DNA Microarray Centre at the Centre for 

Biotechnology, Turku, Finland via 430_2.0 mouse expression arrays (Affymetrix) and 
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the manufacturer's recommended protocol. Affymetrix Expression Console v1.1 

(Affymetrix) was used for normalization of data. Normalization with Microarray Suite 5 

(MAS5) was used for the selection of probes present in at least one sample, and robust multi-

array averaging was used for normalization of data. Statistically significant differences in 

gene expression were identified with Multiple Experiment Viewer v4.3
49

 by 

performing a Significance Analysis of Microarrays (SAM) algorithm, with the 90th-

percentile false-discovery rate set to 5%. Transcript data was matched to proteomics data by 

matching the gene symbol of the Affymetrix probes to the corresponding gene symbols 

reported by the Uniprot FASTA-headers.  

 

Statistical Methods. 

All statistical tests not involved in the analysis of the raw proteomic and microarray 

data were performed using SigmaPlot 12.5 (Systat Software) for Windows or Prism 

V6 (Graphpad Software) for Mac. A Shapiro-Wilk test for normality was performed 

to determine suitable tests for parametric or non-parametric populations. F-tests were 

performed to determine equal variance of populations. All utilized tests were two-

tailed and are stated in the respective figure legends. Samples were considered 

biological replicates if CTLs were generated from separate spleens. 
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