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ABSTRACT: Activating mutations in leucine-rich repeat kinase 2 (LRRK2) are present in a subset of Parkinson’s disease (PD) 

patients and may represent an attractive therapeutic target. Here we report a 2-anilino-4-methylamino-5-chloropyrimidine, HG-10-

102-01(4) is a potent and selective inhibitor of wild-type LRRK2 and the G2019S mutant. Compound 4 substantially inhibits 

Ser910 and Ser935 phosphorylation of both wild-type LRRK2 and G2019S mutant at a concentration of 0.1─0.3 µM in cells and is 

the first compound reported to be capable of inhibiting Ser910 and Ser935 phosphorylation in mouse brain following intraperitoneal 

delivery of doses as low as 50 mg/kg. 

Parkinson’s disease (PD) is the second most common neu-

rodegenerative disease in the world. It affects over one million 

Americans and more than 60,000 patients are newly diagnosed 

each year.1,2  Recent genetic studies have revealed an underly-

ing genetic cause in at least 10% of all PD cases,3  which pro-

vides new opportunities for the discovery of molecularly tar-

geted therapeutics that may ameliorate neurodegeneration. 

Among the genes associated with PD, leucine-rich repeat ki-

nase 2 (LRRK2) is unique because a missense mutation, 

G2019S, is frequently found in both familial and sporadic 

Parkinson’s disease cases.4-9 The G2019S mutation increases 

kinase activity which may result in activation of the neuronal 

death signal pathway, suggesting that small molecule LRRK2 

kinase inhibitors may be able to serve as a new class of thera-

peutics for the treatment of Parkinson’s disease.10-13 Transgen-

ic G2019S LRRK2 mice aged to 12 to 16 months display pro-

gressive degeneration of the substantia nigra pars compacta 

(SNpc) dopaminergic neurons and Parkinson’s phenotypes of 

motor dysfunction suggesting that this mutation may be func-

tionally relevant to the disease.14  

LRRK2 kinase inhibitors are being actively pursued both as 

‘tools’ to pharmacologically interrogate normal and pathologi-

cal LRRK2 biology and as experimental therapeutic agents. 

For example, LRRK2-IN-1 (1)15 and CZC-25146 (2)16 have 

been reported as the first-generation ‘tool’ inhibitors that ex-

hibit excellent potency and selectivity for LRRK2. However, 

none of these compounds are able to efficiently cross the 

mouse blood-brain barrier (BBB) and inhibit LRRK2 kinase 

activity which limits their utility in murine PD models and 

eventual clinical development.15,16 Here we report that a lower 

molecular weight 2,4-diaminopyrimidine, HG-10-102-01 (4), 

maintains highly potent and selective inhibition of LRRK2 and 

is, to our knowledge, the first compound reported to be capa-

ble of inhibiting LRRK2 phosphorylation in mouse brain.

 

Compound ID 

IC50 (nM)a 

wild-type 

LRRK2 

LRRK2-

G2019S 

LRRK2-

A2016T 

LRRK2-

G2019S+

A2016T 

LRRK2-IN-1 (1) 13 6.0 2450 3080 

TAE684 (3) 7.8 6.1 93.3 21.9 

HG-10-102-01 (4) 20.3 3.2 153.7 95.9 

Figure 1. LRRK2 inhibitors. a. Biochemical inhibition of GST-

LRRK2 (1,326-2,527), GST-LRRK2[G2019S] (1,326-2,527), 

GST-LRRKT[A2016T] (1,326-2,527) and GST-

LRRK2[G2019S+A2016T] (1,326-2,527) was assayed using 20 

M Nictide in the presence of 100 M ATP. Results are average 

of triplicate experiments. 

Several 2,4-diaminopyrimidine based inhibitors of LRRK2 

have been reported including LRRK2-IN-1 (1)15, CZC-25146 

(2)16 and TAE684 (3)17, but none of these compounds are ca-

pable of effectively inhibiting phosphorylation of Ser910 and 

Ser935 of LRRK2 in mouse brain at intraperitoneal doses of 

up to 100 mg/Kg. Analysis of predicted docked conformations 

of these compounds to homology models of LRRK2 suggest 

that the 4-anilino moiety of each compound occupies quite 
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distinct regions of the ATP-binding site. In an attempt to lower 

the molecular weight and remove possible disfavorable inter-

actions with the protein, we explored compounds where the 4-

anilino moiety was removed. We and others18,19 discovered 

that simplified structures such as 4 maintain the ability to po-

tently inhibit the biochemical activity of wild-type and 

G2019S mutant LRRK2. Compound 4 exhibited biochemical 

IC50s of 20.3 and 3.2 nM against wild-type LRRK2 and 

LRRK2[G2019S], respectively (Figure 1). The biochemical 

potency of 4 for inhibition of wild-type LRRK2 and 

LRRK2[G2019S] is similar to that observed for LRRK2-IN-1 

(1), however, 4 maintains inhibition of the A2016T mutation 

which induces dramatic resistance to LRRK2-IN-1 (1) (Figure 

1). Although both LRRK2-IN-1 (1) and 4 share the aminopy-

rimidine pharmacophore, a molecular model of 4 docked to a 

homology model of LRRK2 built based on a previously pub-

lished crystallographic structure of ALK,20 suggests that there 

is less possibility for steric hindrance with the A2016T muta-

tion (Figures 2a and 2b).  

 

Figure 2. Molecular model of HG-10-102-01 (4) with 

LRRK2[T2016]. a) Two hydrogen bonds are predicted between 

the hinge region A1950 and the aminopyrimidine motif of the 

inhibitor. One hydrogen bond is predicted between the backbone 

amide carbonyl of S1954 with the amide carbonyl of the inhibitor. 

b) Two potential interactions exist between M1947 and T2016 

with the 5-chloro group on the pyrimidine of the inhibitor. 

 

Scheme 1. Reagents and conditions: a) 2.0 M MeNH2 in THF, 

THF, 0 oC to RT, 6 h, 85%, b) 9, TFA, 2-BuOH, 110 oC, 12 h, 

76%, c) i. thionyl chloride, toluene, 120 oC, 2 h, ii. morpholine, 

DIEA, THF, 0 oC to RT, 1 h, 92%, d) 10% Pd/C, MeOH, RT, 12 h, 

98%.  

Compound 4 was prepared from commercially available 

2,4,5-trichloropyrimidine and 3-methoxy-4-nitrobenzoic acid 

(Scheme 1). The 3-methoxy-4-nitrobenzoic acid 7 was sub-

jected to chlorination with thionyl chloride followed by reac-

tion with morpholine to form the corresponding amide 8 

which was reduced by hydrogenation to yield aniline 9. 2,4,5-

trichloropyrimidine 5 was regioselectively aminated with me-

thylamine to afford to 2,5-dichloro-N-methylpyrimidin-4-

amine 6. Compound 6 was aminated with aniline 9 under acid-

ic conditions to furnish the desired compound 4.  

We next examined the ability of 4 to inhibit LRRK2 in a 

cellular context in comparison to LRRK2-IN-1 (1). As there 

are no validated direct phosphorylation substrates of LRRK2, 

we monitored phosphorylation of Ser910 and Ser935, two 

residues whose phosphorylation is known to be dependent 

upon LRRK2 kinase activity21 (Figure 3). Compound 4 in-

duced a dose-dependent inhibition of Ser910 and Ser935 

phosphorylation in both wild-type LRRK2 and 

LRRK2[G2019S] stably transfected into HEK293 cells (Fig-

ure 3a). Substantial dephosphorylation of Ser910 and Ser935 

was observed at approximately 1 µM concentrations of 4 for 

wild-type LRRK2 and at a slightly lower dose of 0.3 µM for 

LRRK2[G2019S] (Figure 3b), which is a similar potency to 

that observed for LRRK2-IN-1 (1). Consistent with the bio-

chemical results, 4 also induced dephosphorylation of Ser910 

and Ser935 at a concentration of 1─3 µM in the drug-resistant 

LRRK2[A2016T+G2019S] and LRRK2[A2016T] mutants, 

revealing that the A2016T mutation is not an effective way to 

induce resistance to 4. 

 

Figure 3. Compound HG-10-102-01 (4) inhibits LRRK2 in 

cells. HEK293 cells stably expressing a) wild-type GFP-LRRK2, 

b) GFP-LRRK2[G2019S], c) GFP-LRRK2[A2016T] and d) GFP-

LRRK2[G2019S+A2016T] were treated with DMSO or increas-

ing concentrations of 4 for 90 min (1 μM of LRRK2-IN-1 was 

used as a control). Cell lysates were subjected to immunoblotting 

for detection of LRRK2 phosphorylated at Ser910 and Ser935 and 

for total LRRK2.  

 

Figure 4. Compound 4 inhibits endogenously expressed 

LRRK2 a) Endogenous LRRK2 from EBV immortalized human 

lymphoblastoid cells from a control subject (LRRK2+/+) a Parkin-

son’s disease patient homozygous for the LRRK2[G2019S] muta-

tion. After treatment of the cells with DMSO or the indicated 

concentration of 4 (or LRRK2-IN-1 (1)) for 90 min, cell lysates 

were subjected to immunoblot analysis with the indicated anti-

body for western analysis. Immunoblots were performed in dupli-

cate, and results were representative of at least two independent 

experiments.  b) As in a except mouse Swiss 3T3 cells were used. 

c) As in a except mouse embryonic fibroblast cells were used.  



 

We next examined the effect of 4 on endogenously ex-

pressed LRRK2 in human lymphoblastoid cells derived from a 

control and Parkinson’s patient homozygous for the 

LRRK2[G2019S] mutation (Figure 4a). We found that in-

creasing doses of 4 led to similar dephosphorylation of endog-

enous LRRK2 at Ser910 and Ser935, as was observed in 

HEK293 cells stably expressing wild-type LRRK2 or 

LRRK2[G2019S] (compare Figure 3a to Figure 4a). Moreo-

ver, endogenous LRRK2 was also more sensitive to 4 than 

LRRK2-IN-1 (1), which is consistent with the trend we ob-

served in HEK293 cells. We also found that 4 induced similar 

dose-dependent Ser910 and Ser935 dephosphorylation of en-

dogenous LRRK2 in mouse Swiss 3T3 cells and mouse em-

bryonic fibroblast cells (Figures 4b and 4c).  

The mouse pharmacokinetic profile of 4 demonstrated good 

oral bioavailability (67 %F), a short half-life of 0.13 hours and 

low plasma exposure (502 hr*ng/mL, AUClast) (Complete PK 

parameters in the supplementary data). The short half-life is 

likely the consequence of rapid first-pass metabolism as incu-

bation with mouse liver microsomes also revealed a short T1/2 

of 13 minutes.22 We next investigated the pharmacodynamic 

properties of 4 by monitoring inhibition of LRRK2 

Ser910/Ser935 phosphorylation in kidney, spleen and brain 

following intraperitoneal delivery of 100 mg/kg of 4. We ob-

served near complete dephosphorylation of Ser910 and Ser935 

of LRRK2 in all tissues including brain at this dose. We then 

repeated the study at lower doses of 50, 30 and 10 mg/kg 

where we observed near complete inhibition in all tissues at 50 

mg/kg but only partial inhibition in brain at the 30 and 10 

mg/kg doses. These results indicate that 4 is a promising 

chemo-type for achieving dephosphorylation of Ser910 and 

Ser935 in the brain. 

 

Figure 5. Pharmacodynamic analysis for HG-10-102-01 (4). Pharmacodynamic study of HG-10-102-01 (4) from brain, spleen and kid-

ney following intraperitoneal administration at the indicated doses.  Tissues were collected and endogenous LRRK2 was resolved by SDS-

PAGE and blotted with a phospho-specific antibody directed against Ser910, Ser935 and total LRRK2. (The quantitative analysis is in-

cluded in supporting information) 

To further explore the ability of 4 to inhibit LRRK2 in vivo, 

we used a chemical proteomics approach, KiNativ, to monitor 

kinase inhibition in tissues from the inhibitor treated animals.  

Brains and spleens from animals treated with 4 at 3, 10, 30, 50 

and 100 mg/kg, and LRRK2-IN-1 (1) at 100 mg/kg were eval-

uated and compared to vehicle treated animal brains. Briefly, 

the brains were lysed in a 5X volume of buffer (no detergent) 

and labeled with an ADP-acylphosphate probe. Following 

sample workup and trypsin digestion, kinase labeling by the 

acylphosphate probe was quantitatively determined by mass 

spectrometry. Data was collected for >150 protein and lipid 

kinases (supplemental data). Of the kinases profiled, only 

LRRK2 showed a clear and significant dose-related increase in 

engagement with 4.  LRRK2 inhibition was ~40% at 30 mg/kg 

and ~70% at 50 and 100 mg/kg in the brain. Greater LRRK2 

target engagement was observed in the spleen: ~40% at 3 

mg/kg, ~80-90% at 10 mg/kg and greater than 90% in the 30-

100 mg/kg treated animals. In contrast, no LRRK2 inhibition 

was observed in brains of mice treated with 100 mg/kg 

LRRK2-IN-1 (1), consistent with the inability of the com-

pound to induce dephosphosphorylation of the Ser910 and 

Ser935 sites of LRRK2. Considering these inhibition values 

correspond to a 5X dilution of material relative to the intact 

brain, these engagement values correlate very well with the 

observed inhibition of p-LRRK2. No other kinases showed 

>50% inhibition at any dose of 4, and only JNK1/2/3 and 

TBK1 showed potential dose related inhibition (~35-40% at 

50 and 100 mg/kg) suggesting that compound 4 is a highly 

selective inhibitor of LRRK2. 

The kinase selectivity of 4 was further assessed using stand-

ard radioactivity-base enzymatic assays against a panel of 138 

kinases (Dundee profiling).23 At a concentration of 10 µM, 

compound 4 only inhibited the kinase activities of MLK1 and 

MNK2 to greater than 80% of the DMSO control (Complete 

results presented in the supplementary data). Dose-response 

analysis revealed inhibition of MLK1 with an IC50 2.1 M and 

MNK2 with an IC50 0.6 M. KinomeScan analysis against a 

near comprehensive panel of 451 kinases at a concentration of 

1 M resulted in no interactions detected with kinases other 

than G2019S LRRK2 with the exception of one mutant form 

of c-Kit (L576P) demonstrating the outstanding selectivity of 

this inhibitor (complete profiling results provided in the sup-

plementary data).24 These results suggest that 4 is a highly 

selective LRRK2 inhibitor however further profiling of addi-

tional kinases and other ATP-dependent enzymes is still war-

ranted. 

In summary, we have discovered that 4 is a potent biochem-

ical and cellular inhibitor of LRRK2 kinase activity. Detailed 

characterization of 4 using LRRK2-IN-1 as a bench mark re-

vealed that 4 significantly inhibited phosphorylation of wild-

type LRRK2 and LRRK2[G2019S] mutant at Ser910 and 



 

Ser935 at 0.3-1.0 µM in cell culture, which is approximately 

the same potency as LRRK2-IN-1 (1). Compound 4 is rela-

tively insensitive to the A2016T mutation which suggests that 

this mutant will not be useful to validate whether the pharma-

cological effects of the compound are LRRK2-dependent. 

Compound 4 exhibits excellent kinase selectivity as assessed 

by recombinant kinases (124), KinomeScan (451 kinases) and 

KiNativ profiling. Compound 4 can inhibit phosphorylation of 

Ser910 and Ser935 of LRRK2 in brain and peripheral tissues 

following intraperitoneal doses of 50 mg/kg. Further optimiza-

tion of this chemo-type especially in regards to in vivo half-life 

will be reported in due course. 
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LRRK2, leucine-rich repeat kinase 2; PD, Parkinson’s disease; 

ATP, adenosine triphosphate; ALK, anaplastic lymphoma kinase; 

THF, tetrahydrofuran; RT, room temperature; TFA, trifluoroace-

tic acid; 2-BuOH, 2-butanol; DIEA, N,N-diisopropylethylamine; 

PK, pharmacokinetics; F, bioavailability; AUC, area under the 

concentration time curve; CL, clearance; Clast, last measured con-

centration; Cmax, maximum concentration observed; T1/2, elimina-

tion half-life; Vss, volume in steady state; MLK1, mixed-lineage 

Kinase 1; MNK2, MAP kinase-interacting serine/threonine-

protein kinase 2; DMSO, dimethyl sulfoxide.  
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