28 research outputs found

    VLTI monitoring of the dust formation event of the Nova V1280 Scorpii

    Get PDF
    This is the author accepted manuscript. The final version is available from EDP Sciences via the DOI in this record.Context. We present the first high spatial-resolution monitoring of the dust-forming nova V1280 Sco, performed with the Very Large Telescope Interferometer (VLTI). Aims. These observations promise to improve the distance determination of such events and constrain the mechanisms leading to very efficient dust formation under the harsh physical conditions encountered in novae ejecta. Methods. Spectra and visibilities were regularly acquired between the onset of dust formation, 23 days after discovery (or 11 days after maximum), and day 145, using the beam-combiner instruments AMBER (near-IR) and MIDI (mid-IR). These interferometric observations were complemented by near-infrared data from the 1.2 m Mt. Abu Infrared Observatory, India. The observations are initially interpreted in terms of simple uniform models; however more complex models, probably involving a second shell, are required to explain data acquired following t = 110 d after outburst. This behavior is in accordance with the light curve of V1280 Sco, which exhibits a secondary peak at about t = 106 d, followed by a new, steep decline, suggesting a new dust-forming event. Spherical dust shell models generated with the DUSTY code are used to investigate the parameters of the main dust shell. Results. Using uniform disk models, these observations allow us to determine an apparent linear expansion rate for the dust shell of 0.35 ± 0.03 mas day−1 and the approximate ejection time of the matter in which dust formed of tejec = 10.5 ± 7 d, i.e. close to the maximum brightness. This information, combined with the expansion velocity of 500 ± 100 km s−1, implies a distance estimate of 1.6 ± 0.4 kpc. The sparse uv coverage does not enable deviations from spherical symmetry to be clearly discerned. The dust envelope parameters were determined. The dust mass generated was typically 2–8 × 10−9 M day−1, with a probable peak in production at about 20 days after the detection of dust and another peak shortly after t = 110 d, when the amount of dust in the shell was estimated as 2.2 × 10−7 M. Considering that the dust-forming event lasted at least 200–250 d, the mass of the ejected material is likely to have exceeded 10−4 M. The conditions for the formation of multiple shells of dust are also discussed. K

    The Expanding Fireball of Nova Delphini 2013

    Full text link
    A classical nova occurs when material accreting onto the surface of a white dwarf in a close binary system ignites in a thermonuclear runaway. Complex structures observed in the ejecta at late stages could result from interactions with the companion during the common envelope phase. Alternatively, the explosion could be intrinsically bipolar, resulting from a localized ignition on the surface of the white dwarf or as a consequence of rotational distortion. Studying the structure of novae during the earliest phases is challenging because of the high spatial resolution needed to measure their small sizes. Here we report near-infrared interferometric measurements of the angular size of Nova Delphini 2013, starting from one day after the explosion and continuing with extensive time coverage during the first 43 days. Changes in the apparent expansion rate can be explained by an explosion model consisting of an optically thick core surrounded by a diffuse envelope. The optical depth of the ejected material changes as it expands. We detect an ellipticity in the light distribution, suggesting a prolate or bipolar structure that develops as early as the second day. Combining the angular expansion rate with radial velocity measurements, we derive a geometric distance to the nova of 4.54 +/- 0.59 kpc from the Sun.Comment: Published in Nature. 32 pages. Final version available at http://www.nature.com/nature/journal/v515/n7526/full/nature13834.htm

    Benzyne in V4334 Sqr: A Quest for the Ring with SOFIA/EXES

    Get PDF
    Large aromatic molecules are ubiquitous in both circumstellar and interstellar environments. Detection of small aromatic molecules, such as benzene (C6H6) and benzyne (C6H4), are rare in astrophysical environments. Detection of such species will have major implications for our understanding of the astrochemistry involved in the formation of the molecules necessary for life, including modeling the chemical pathways to the formation of larger hydrocarbon molecules. We conducted a search for the infrared 18 μm spectral signature of benzyne in V4334 Sgr with the Stratospheric Observatory for Infrared Astronomy (SOFIA)/Echelon-Cross-Echelle Spectrograph (EXES) finding no evidence for a feature at the sensitivity of our observations

    Infrared spectroscopy of CK Vulpeculae: revealing a remarkably powerful blast from the past

    Get PDF
    CK Vulpeculae (CK Vul), which erupted in AD 1670-71, was long considered to be a nova outburst; however, recent observations have required that alternative scenarios be considered. Long-slit infrared spectroscopy of a forbidden line of iron reported here has revealed high line-of-sight velocities (similar to 900 km s(-1)) of the ansae at the tips of the bipolar lobes imaged in H alpha in 2010. The deprojected velocities of the tips are approximately 2130 km s(-1) assuming the previously derived inclination angle of 65 degrees for the axis of cylindrical symmetry of the bipolar nebula. Such high velocities are in stark contrast to previous reports of much lower expansion velocities in CK Vul. Based on the deprojected velocities of the tips and their angular expansion measured over a 10 yr baseline, we derive a revised estimate, with estimated uncertainties, of 3.2(-0.6)(+0.9) kpc for the distance to CK Vul. This implies that the absolute visual magnitude at the peak of the 1670 explosion was M-V = -12.4(-2.4)(+1.3), indicating that the 1670 event was far more luminous than previous estimates and brighter than any classical nova or any Galactic stellar merger. We propose that CK Vul belongs to the class of intermediate-luminosity optical transients (ILOTs), objects which bridge the luminosity gap between novae and supernovae. While eruptions in lower luminosity ILOTs are attributed to merger events, the origin of the highly luminous ILOT outbursts is currently not known

    Infrared spectroscopy of the recent outburst in V1047 Cen (Nova Centauri 2005)

    Get PDF
    Fourteen years after its eruption as a classical nova (CN), V1047 Cen (Nova Cen 2005) began an unusual re-brightening in 2019 April. The amplitude of the brightening suggests that this is a dwarf nova (DN) eruption in a CN system. Very few CNe have had DN eruptions within decades of the main CN outburst. The 14 years separating the CN and DN eruptions of V1047 Cen is the shortest of all instances recorded thus far. Explaining this rapid succession of CN and DN outbursts in V1047 Cen may be challenging within the framework of standard theories for DN outbursts. Following a CN eruption, the mass accretion rate is believed to remain high (M˙108(\dot{M}\sim10^{-8}M_\odotyr1)^{-1}) for a few centuries, due to the irradiation of the secondary star by the still-hot surface of the white dwarf. Thus a DN eruption is not expected to occur during this high mass accretion phase as DN outbursts, which result from thermal instabilities in the accretion disk, and arise during a regime of low mass accretion rate (M˙1010(\dot{M}\sim10^{-10}M_\odotyr1)^{-1}). Here we present near-infrared spectroscopy to show that the present outburst is most likely a DN eruption, and discuss the possible reasons for its early occurrence. Even if the present re-brightening is later shown to be due to a cause other than a DN outburst, the present study provides invaluable documentation of this unusual event

    The rise of SN 2014J in the nearby galaxy M82

    Get PDF
    We report on the discovery of SN 2014J in the nearby galaxy M82. Given its proximity, it offers the best opportunity to date to study a thermonuclear supernova (SN) over a wide range of the electromagnetic spectrum. Optical, near-IR, and mid-IR observations on the rising light curve, orchestrated by the intermediate Palomar Transient Factory, show that SN 2014J is a spectroscopically normal Type Ia supernova (SN Ia), albeit exhibiting high-velocity features in its spectrum and heavily reddened by dust in the host galaxy. Our earliest detections start just hours after the fitted time of explosion. We use high-resolution optical spectroscopy to analyze the dense intervening material and do not detect any evolution in the resolved absorption features during the light curve rise. Similar to other highly reddened SNe Ia, a low value of total-to-selective extinction, RV ≲ 2, provides the best match to our observations. We also study pre-explosion optical and near-IR images from Hubble Space Telescope with special emphasis on the sources nearest to the SN location. © 2014. The American Astronomical Society. All rights reserved
    corecore