1,023 research outputs found

    Co-designing Indices for Tailored Seasonal Climate Forecasts in Malawi

    Get PDF
    In central and southern Malawi, climate variability significantly impacts agricultural production and food availability owing to a high dependence on rain-fed maize production. Seasonal climate forecast information has the potential to inform farmers' agricultural planning, thereby improving preparedness to extreme events. In this paper we describe and evaluate an approach to co-designing and testing agro-climatic indices for use in seasonal forecasts that are tailored to farmer-defined decision-making needs in three districts of central and southern Malawi. Specifically, we aim to (a) identify critical maize specific agro-climatic indices by engaging key stakeholders and farmers; (b) compare and triangulate these indices with the historical climate record in study districts; and (c) analyze empirical relationships between seasonal total rainfall and maize specific indices in order to assess the potential for forecasting them at appropriate seasonal timescales. The identified agro-climatic indices include critical temperature/rainfall thresholds that are directly associated with phenological stages of maize growth with direct implications for maize yield and quality. While there are statistically significant relationships between observed wet season rainfall totals and several agro-climatic indices (e.g., heavy rainfall days and dry spell), the forecast skill of the UK Met Office's coupled initialized global seasonal forecasting system (GloSea5) over Malawi is currently low to provide confident predictions of total wet season rainfall and the agro-climatic indices correlated with it. We reflect on some of the opportunities and challenges associated with integrating farmers' information needs into a seasonal forecast process, through the use of agro-climatic indices

    Conserved and highly expressed tRNA derived fragments in zebrafish

    Get PDF
    Background: Small non-coding RNAs (sncRNAs) are a class of transcripts implicated in several eukaryotic regulatory mechanisms, namely gene silencing and chromatin regulation. Despite significant progress in their identification by next generation sequencing (NGS) we are still far from understanding their full diversity and functional repertoire. Results: Here we report the identification of tRNA derived fragments (tRFs) by NGS of the sncRNA fraction of zebrafish. The tRFs identified are 18–30 nt long, are derived from specific 5′ and 3′ processing of mature tRNAs and are differentially expressed during development and in differentiated tissues, suggesting that they are likely produced by specific processing rather than random degradation of tRNAs. We further show that a highly expressed tRF (5′tRF-ProCGG) is cleaved in vitro by Dicer and has silencing ability, indicating that it can enter the RNAi pathway. A computational analysis of zebrafish tRFs shows that they are conserved among vertebrates and mining of publicly available datasets reveals that some 5′tRFs are differentially expressed in disease conditions, namely during infection and colorectal cancer. Conclusions: tRFs constitute a class of conserved regulatory RNAs in vertebrates and may be involved in mechanisms of genome regulation and in some diseases. Keywords: tRNA derived fragments, Zebrafish, Small non coding RNAs, tRNAspublishe

    Producing Cochrane systematic reviews—a qualitative study of current approaches and opportunities for innovation and improvement

    Get PDF
    Background: Producing high-quality, relevant systematic reviews and keeping them up to date is challenging. Cochrane is a leading provider of systematic reviews in health. For Cochrane to continue to contribute to improvements in heath, Cochrane Reviews must be rigorous, reliable and up to date. We aimed to explore existing models of Cochrane Review production and emerging opportunities to improve the efficiency and sustainability of these processes. Methods: To inform discussions about how to best achieve this, we conducted 26 interviews and an online survey with 106 respondents. Results: Respondents highlighted the importance and challenge of creating reliable, timely systematic reviews. They described the challenges and opportunities presented by current production models, and they shared what they are doing to improve review production. They particularly highlighted significant challenges with increasing complexity of review methods; difficulty keeping authors on board and on track; and the length of time required to complete the process. Strong themes emerged about the roles of authors and Review Groups, the central actors in the review production process. The results suggest that improvements to Cochrane's systematic review production models could come from improving clarity of roles and expectations, ensuring continuity and consistency of input, enabling active management of the review process, centralising some review production steps; breaking reviews into smaller "chunks", and improving approaches to building capacity of and sharing information between authors and Review Groups. Respondents noted the important role new technologies have to play in enabling these improvements. Conclusions: The findings of this study will inform the development of new Cochrane Review production models and may provide valuable data for other systematic review producers as they consider how best to produce rigorous, reliable, up-to-date reviews

    Dre-miR-2188 Targets Nrp2a and Mediates Proper Intersegmental Vessel Development in Zebrafish Embryos

    Get PDF
    BACKGROUND: MicroRNAs (miRNAs) are a class of small RNAs that are implicated in the control of eukaryotic gene expression by binding to the 3'UTR of target mRNAs. Several algorithms have been developed for miRNA target prediction however, experimental validation is still essential for the correct identification of miRNA targets. We have recently predicted that Neuropilin2a (Nrp2a), a vascular endothelial growth factor receptor which is essential for normal developmental angiogenesis in zebrafish, is a dre-miR-2188 target. METHODOLOGY: Here we show that dre-miR-2188 targets the 3'-untranslated region (3'UTR) of Nrp2a mRNA and is implicated in proper intersegmental vessel development in vivo. Over expression of miR-2188 in zebrafish embryos down regulates Nrp2a expression and results in intersegmental vessel disruption, while its silencing increases Nrp2a expression and intersegmental vessel sprouting. An in vivo GFP sensor assay based on a fusion between the GFP coding region and the Nrp2a 3'UTR confirms that miR-2188 binds to the 3'UTR of Nrp2a and inhibits protein translation. CONCLUSIONS: We demonstrate that miR-2188 targets Nrp2a and affects intersegmental vessel development in zebrafish embryos

    Detection of diploid males in a natural colony of the cleptobiotic bee Lestrimelitta sp (Hymenoptera, Apidae)

    Get PDF
    When working at quantifying the genome size of stingless bees, it was observed that males of Lestrimelitta sp possessed the same amount of nuclear DNA as the females. Thus, we used flow cytometry (FCM) and cytogenetic analysis to confirm the ploidy of these individuals. The males analyzed proved to be diploid, since, through cytometric analysis, it was demonstrated that the mean genome size of both males and females was the same (C = 0.463 pg), and, furthermore, cytogenetic analysis demonstrated that both had 2n = 28 chromosomes
    corecore