39 research outputs found

    Mean Hα+[N ii]+[S ii] EW inferred for star-forming galaxies at z  ∌ 5.1–5.4 using high-quality Spitzer /IRAC photometry

    Get PDF
    Recent Spitzer/InfraRed Array Camera (IRAC) photometric observations have revealed that rest-frame optical emission lines contribute significantly to the broad-band fluxes of high-redshift galaxies. Specifically, in the narrow redshift range z ∌ 5.1–5.4 the [3.6]–[4.5] colour is expected to be very red, due to contamination of the 4.5 ÎŒm band by the dominant Hα line, while the 3.6 ÎŒm filter is free of nebular emission lines. We take advantage of new reductions of deep Spitzer/IRAC imaging over the Great Observatories Origins Deep Survey-North+South fields (LabbĂ© et al. 2015) to obtain a clean measurement of the mean Hα equivalent width (EW) from the [3.6]–[4.5] colour in the redshift range z = 5.1–5.4. The selected sources either have measured spectroscopic redshifts (13 sources) or lie very confidently in the redshift range z = 5.1–5.4 based on the photometric redshift likelihood intervals (11 sources). Our zphot = 5.1–5.4 sample and zspec = 5.10–5.40 spectroscopic sample have a mean [3.6]–[4.5] colour of 0.31 ± 0.05 and 0.35 ± 0.07 mag, implying a rest-frame EW (Hα+[N II]+[S II]) of 665 ± 53 and 707 ± 74 Å, respectively, for sources in these samples. These values are consistent albeit slightly higher than derived by Stark et al. at z ∌ 4, suggesting an evolution to higher values of the Hα+[N II]+[S II] EW at z > 2. Using the 3.6 ÎŒm band, which is free of emission line contamination, we perform robust spectral energy distribution fitting and find a median specific star formation rate of sSFR = 17+2−517−5+2 Gyr−1, 7+1−2×7−2+1× higher than at z ∌ 2. We find no strong correlation (<2σ) between the Hα+[N II]+[S II] EW and the stellar mass of sources. Before the advent of JWST, improvements in these results will come through an expansion of current spectroscopic samples and deeper Spitzer/IRAC measurements

    “Excellence R Us”: university research and the fetishisation of excellence

    Get PDF
    The rhetoric of “excellence” is pervasive across the academy. It is used to refer to research outputs as well as researchers, theory and education, individuals and organisations, from art history to zoology. But does “excellence” actually mean anything? Does this pervasive narrative of “excellence” do any good? Drawing on a range of sources we interrogate “excellence” as a concept and find that it has no intrinsic meaning in academia. Rather it functions as a linguistic interchange mechanism. To investigate whether this linguistic function is useful we examine how the rhetoric of excellence combines with narratives of scarcity and competition to show that the hypercompetition that arises from the performance of “excellence” is completely at odds with the qualities of good research. We trace the roots of issues in reproducibility, fraud, and homophily to this rhetoric. But we also show that this rhetoric is an internal, and not primarily an external, imposition. We conclude by proposing an alternative rhetoric based on soundness and capacity-building. In the final analysis, it turns out that that “excellence” is not excellent. Used in its current unqualified form it is a pernicious and dangerous rhetoric that undermines the very foundations of good research and scholarship

    Whether weather matters: Evidence of association between in utero meteorological exposures and foetal growth among Indigenous and non-Indigenous mothers in rural Uganda

    Get PDF
    Pregnancy and birth outcomes have been found to be sensitive to meteorological variation, yet few studies explore this relationship in sub-Saharan Africa where infant mortality rates are the highest in the world. We address this research gap by examining the association between meteorological factors and birth weight in a rural population in southwestern Uganda. Our study included hospital birth records (n = 3197) from 2012 to 2015, for which we extracted meteorological exposure data for the three trimesters preceding each birth. We used linear regression, controlling for key covariates, to estimate the timing, strength, and direction of meteorological effects on birth weight. Our results indicated that precipitation during the third trimester had a positive association with birth weight, with more frequent days of precipitation associated with higher birth weight: we observed a 3.1g (95% CI: 1.0–5.3g) increase in birth weight per additional day of exposure to rainfall over 5mm. Increases in average daily temperature during the third trimester were also associated with birth weight, with an increase of 41.8g (95% CI: 0.6–82.9g) per additional degree Celsius. When the sample was stratified by season of birth, only infants born between June and November experienced a significant associated between meteorological exposures and birth weight. The association of meteorological variation with foetal growth seemed to differ by ethnicity; effect sizes of meteorological were greater among an Indigenous subset of the population, in particular for variation in temperature. Effects in all populations in this study are higher than estimates of the African continental average, highlighting the heterogeneity in the vulnerability of infant health to meteorological variation in different contexts. Our results indicate that while there is an association between meteorological variation and birth weight, the magnitude of these associations may vary across ethnic groups with differential socioeconomic resources, with implications for interventions to reduce these gradients and offset the health impacts predicted under climate change

    JWST UNCOVER: Extremely Red and Compact Object at z phot ≃ 7.6 Triply Imaged by A2744

    Get PDF
    Recent JWST/NIRCam imaging taken for the ultra-deep UNCOVER program reveals a very red dropout object at z phot ≃ 7.6, triply imaged by the galaxy cluster A2744 (z d = 0.308). All three images are very compact, i.e., unresolved, with a delensed size upper limit of r e â‰Č 35 pc. The images have apparent magnitudes of m F444W ∌ 25−26 AB, and the magnification-corrected absolute UV magnitude of the source is M UV,1450 = −16.81 ± 0.09. From the sum of observed fluxes and from a spectral energy distribution (SED) analysis, we obtain estimates of the bolometric luminosities of the source of L bol ≳ 1043 erg s−1 and L bol ∌ 1044–1046 erg s−1, respectively. Based on its compact, point-like appearance, its position in color–color space, and the SED analysis, we tentatively conclude that this object is a UV-faint dust-obscured quasar-like object, i.e., an active galactic nucleus at high redshift. We also discuss other alternative origins for the object’s emission features, including a massive star cluster, Population III, supermassive, or dark stars, or a direct-collapse black hole. Although populations of red galaxies at similar photometric redshifts have been detected with JWST, this object is unique in that its high-redshift nature is corroborated geometrically by lensing, that it is unresolved despite being magnified—and thus intrinsically even more compact—and that it occupies notably distinct regions in both size–luminosity and color–color space. Planned UNCOVER JWST/NIRSpec observations, scheduled in Cycle 1, will enable a more detailed analysis of this object

    Tumor cell survival pathways activated by photodynamic therapy: a molecular basis for pharmacological inhibition strategies

    Get PDF

    The prevalence of galaxy overdensities around UV-luminous Lyman α emitters in the Epoch of Reionization

    Get PDF
    ABSTRACT Before the end of the Epoch of Reionization, the Hydrogen in the Universe was predominantly neutral. This leads to a strong attenuation of Ly α lines of z ≳ 6 galaxies in the intergalactic medium. Nevertheless, Ly α has been detected up to very high redshifts (z ∌ 9) for several especially UV luminous galaxies. Here, we test to what extent the galaxy’s local environment might impact the Ly α transmission of such sources. We present an analysis of dedicated Hubble Space Telescope (HST) imaging in the CANDELS/EGS field to search for fainter neighbours around three of the most UV luminous and most distant spectroscopically confirmed Ly α emitters: EGS-zs8-1, EGS-zs8-2, and EGSY-z8p7 at zspec = 7.73, 7.48, and 8.68, respectively. We combine the multiwavelength HST imaging with Spitzer data to reliably select z ∌ 7–9 galaxies around the central, UV-luminous sources. In all cases, we find a clear enhancement of neighbouring galaxies compared to the expected number in a blank field (by a factor ∌3–9×). Our analysis thus reveals ubiquitous overdensities around luminous Ly α emitting sources in the heart of the cosmic reionization epoch. We show that our results are in excellent agreement with expectations from the Dragons simulation, confirming the theoretical prediction that the first ionized bubbles preferentially formed in overdense regions. While three UV luminous galaxies already have spectroscopic redshifts, the majority of the remaining fainter, surrounding sources are yet to be confirmed via spectroscopy. JWST follow-up observations of the neighbouring galaxies identified here will thus be needed to confirm their physical association and to map out the ionized regions produced by these sources.</jats:p

    The prevalence of galaxy overdensities around UV-luminous Lyman α emitters in the Epoch of Reionization

    No full text
    Before the end of the Epoch of Reionization, the Hydrogen in the Universe was predominantly neutral. This leads to a strong attenuation of Ly α lines of z ≳ 6 galaxies in the intergalactic medium. Nevertheless, Ly α has been detected up to very high redshifts (z ∌9) for several especially UV luminous galaxies. Here, we test to what extent the galaxy's local environment might impact the Ly α transmission of such sources. We present an analysis of dedicated Hubble Space Telescope (HST) imaging in the CANDELS/EGS field to search for fainter neighbours around three of the most UV luminous and most distant spectroscopically confirmed Ly α emitters: EGS-zs8-1, EGS-zs8-2, and EGSY-z8p7 at zspec = 7.73, 7.48, and 8.68, respectively. We combine the multiwavelength HST imaging with Spitzer data to reliably select z ∌7-9 galaxies around the central, UV-luminous sources. In all cases, we find a clear enhancement of neighbouring galaxies compared to the expected number in a blank field (by a factor ∌3-9×). Our analysis thus reveals ubiquitous overdensities around luminous Ly α emitting sources in the heart of the cosmic reionization epoch. We show that our results are in excellent agreement with expectations from the Dragons simulation, confirming the theoretical prediction that the first ionized bubbles preferentially formed in overdense regions. While three UV luminous galaxies already have spectroscopic redshifts, the majority of the remaining fainter, surrounding sources are yet to be confirmed via spectroscopy. JWST follow-up observations of the neighbouring galaxies identified here will thus be needed to confirm their physical association and to map out the ionized regions produced by these sources

    Rotation in [C ii]-emitting gas in two galaxies at a redshift of 6.8

    Get PDF
    The earliest galaxies are thought to have emerged during the first billion years of cosmic history, initiating the ionization of the neutral hydrogen that pervaded the Universe at this time. Studying this ‘epoch of reionization’ involves looking for the spectral signatures of ancient galaxies that are, owing to the expansion of the Universe, now very distant from Earth and therefore exhibit large redshifts. However, finding these spectral fingerprints is challenging. One spectral characteristic of ancient and distant galaxies is strong hydrogen-emission lines (known as Lyman-α lines), but the neutral intergalactic medium that was present early in the epoch of reionization scatters such Lyman-α photons. Another potential spectral identifier is the line at wavelength 157.4 micrometres of the singly ionized state of carbon (the [C ii] λ = 157.74 Όm line), which signifies cooling gas and is expected to have been bright in the early Universe. However, so far Lyman-α-emitting galaxies from the epoch of reionization have demonstrated much fainter [C ii] luminosities than would be expected from local scaling relations1,2,3,4,5, and searches for the [C ii] line in sources without Lyman-α emission but with photometric redshifts greater than 6 (corresponding to the first billion years of the Universe) have been unsuccessful. Here we identify [C ii] λ = 157.74 Όm emission from two sources that we selected as high-redshift candidates on the basis of near-infrared photometry; we confirm that these sources are two galaxies at redshifts of z = 6.8540 ± 0.0003 and z = 6.8076 ± 0.0002. Notably, the luminosity of the [C ii] line from these galaxies is higher than that found previously in star-forming galaxies with redshifts greater than 6.5. The luminous and extended [C ii] lines reveal clear velocity gradients that, if interpreted as rotation, would indicate that these galaxies have similar dynamic properties to the turbulent yet rotation-dominated disks that have been observed in Hα-emitting galaxies two billion years later, at ‘cosmic noon’.R.M. and S.C. acknowledge ERC Advanced Grant 695671 ‘QUENCH’ and support by the Science and Technology Facilities Council (STFC)
    corecore