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Abstract

Pregnancy and birth outcomes have been found to be sensitive to meteorological variation,

yet few studies explore this relationship in sub-Saharan Africa where infant mortality rates

are the highest in the world. We address this research gap by examining the association

between meteorological factors and birth weight in a rural population in southwestern

Uganda. Our study included hospital birth records (n = 3197) from 2012 to 2015, for which

we extracted meteorological exposure data for the three trimesters preceding each birth.

We used linear regression, controlling for key covariates, to estimate the timing, strength,

and direction of meteorological effects on birth weight. Our results indicated that precipita-

tion during the third trimester had a positive association with birth weight, with more frequent

days of precipitation associated with higher birth weight: we observed a 3.1g (95% CI: 1.0–

5.3g) increase in birth weight per additional day of exposure to rainfall over 5mm. Increases

in average daily temperature during the third trimester were also associated with birth

weight, with an increase of 41.8g (95% CI: 0.6–82.9g) per additional degree Celsius. When

the sample was stratified by season of birth, only infants born between June and November

experienced a significant associated between meteorological exposures and birth weight.

The association of meteorological variation with foetal growth seemed to differ by ethnicity;

effect sizes of meteorological were greater among an Indigenous subset of the population,

in particular for variation in temperature. Effects in all populations in this study are higher

than estimates of the African continental average, highlighting the heterogeneity in the vul-

nerability of infant health to meteorological variation in different contexts. Our results indi-

cate that while there is an association between meteorological variation and birth weight,

the magnitude of these associations may vary across ethnic groups with differential
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socioeconomic resources, with implications for interventions to reduce these gradients and

offset the health impacts predicted under climate change.

1. Introduction

Climate change disproportionately impacts health for those already facing the greatest burden

of ill health and social inequality [1, 2]. Adverse impacts are highest among poor populations

reliant on subsistence farming and with low access to health services [3]. In this context, rural

and remote populations in sub-Saharan Africa and Indigenous populations worldwide are

among the most vulnerable globally. Research on climate-sensitive health outcomes has pri-

marily focused on the more direct associations between climate or meteorology and health,

examining the effects of climate or weather on vector-borne diseases such as malaria, water-

borne diseases such as cholera, food security and nutrition, or on the health impacts of extreme

weather events [1, 4–6]. However, the bulk of climate impacts on health are expected to come

from more distal, indirect, and diverse impacts on health outcomes not typically or widely rec-

ognized as climate sensitive [7–9].

There has been increasing interest and research into the extent to which meteorological var-

iation impacts foetal development [10–13]. The majority of studies investigating weather

impacts on birth outcomes have taken place in high-income countries, where the mechanisms

and context through which meteorological factors influence foetal growth may differ com-

pared to developing regions [13, 14]. Many of the known determinants for low birth weight in

developing countries are seasonally patterned, among them major predictors of birth weight:

maternal energy intake during pregnancy, pre-pregnancy body mass index (BMI), weight gain

during pregnancy [15]. According to Molina and Saldarriaga [16], there are five pathways

through which temperature can affect the health of a developing foetus: exposure to extreme

temperatures, maternal infection by a temperature-sensitive disease (e.g., respiratory infec-

tions) or by a biological vector-borne disease, maternal mental illnesses, and food insecurity

brought about by less predictable growing conditions. Similarly, rainfall has been posited to

affect foetal health through the reduced crop yields in the dry season that may result in mater-

nal nutritional deficits at these times. Nevertheless, few empirical studies have explored the

relationship between seasonal or meteorological effects and birth weight at the regional level

and in a sub-Saharan African context. Grace, Davenport [17] address this research gap in their

examination of data from 19 countries across Africa. Their results indicate that maternal expo-

sure to high temperatures during gestation had a negative effect on birth weight, while expo-

sure to increased levels of precipitation during early pregnancy had a positive effect in some

settings. The latter finding is surprising as it differs from those of the seminal Dutch Famine

study on the timing of nutritional insults in utero and foetal birth weight [18]. Given substan-

tial variation in regional climates and birthing practices across Africa, however, it remains

unclear whether weather homogenously impacts birth outcomes across countries and in

diverse contexts. We anticipate that at more regional scales, the nature of associations between

meteorological exposures and birth weight may differ in both direction and magnitude and

that characterizing these individual patterns is essential to climate change adaptation interven-

tions tailored to specific circumstances.

We contribute to the small but emerging evidence base examining meteorological associa-

tions with birth outcomes in vulnerable populations in sub-Saharan Africa. More specifically,

we evaluate the association between meteorological factors and foetal growth in a sample of

births from Bwindi Community Hospital in Kanungu District, Uganda. We hypothesize that
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meteorological drivers will be associated with foetal growth, that these effects will be greatest

in the third trimester (in accordance with the theory of third trimester nutritional deprivation

having the effect on birth weight [18]), and that effects will modified by ethnicity (differing

between Indigenous and non-Indigenous mothers). Specific objectives included: 1) assessing

the impact of meteorological variation on birth weight, 2) identifying the highest-risk period

for meteorological exposures during pregnancy, and 3) comparing the effects of meteorologi-

cal exposures on birth weight in Indigenous and non-Indigenous mothers inhabiting the same

region.

1.2 Determinants of size at birth

Size at birth is a function of the length of gestation and the rate of growth in utero [19]. Birth

weight correlates with gestation length [20], and is thus not an independent measure of a

baby’s health status, though it is often the only available measure in low-resource settings [21].

More appropriate measures consider weight in relation to gestation and provide classifications

(small for gestational age [SGA], appropriate for gestational age [AGA]) according to gesta-

tional age-specific percentiles, which can be used as a proxy of intrauterine growth restriction

[IUGR]). The rate of foetal growth can vary depending on various factors, one of the most

important being based on the timing of any nutritional insults to which the foetus is exposed.

Results from the influential Dutch famine study indicated that nutritional deprivation during

the third trimester in particular can have a detrimental effect on birth weight [18, 22].

The aetiologic determinants of IUGR differ from those of preterm birth [15]. In the develop-

ing country context, the following have been identified as key determinants of IUGR (in decreas-

ing order of importance): low energy intake/gestational weight gain, low pre-pregnancy BMI,

short stature, malaria (for primiparae in malaria-endemic areas), cigarette smoking (where

maternal smoking during pregnancy is prevalent [10–20%]), primiparity, pregnancy-induced

hypertension, congenital anomalies; and other genetic factors [15]. As with many health out-

comes, low birth weight is patterned by socioeconomic disparities, though the majority of studies

on these patterns have been undertaken in developed country settings [23–27].

2. Methods

2.1 Study location and population

Our study sample consists of 3691 women who gave birth at Bwindi Community Hospital in

Kanungu District, Uganda, between June 2012 and June 2015. Kanungu District is situated in

southwestern Uganda, near the borders of the Democratic Republic of the Congo and Rwanda

(Fig 1). The study area is situated in the region surrounding Bwindi Impenetrable National

Park, which is inhabited predominantly by the Bakiga ethnic group as well as approximately

900 members (1%) of the Indigenous Batwa population [28, 29]. Both the Bakiga and Batwa

have high burden of ill health relative to the national average, with particularly high inequality

and burden of ill health among the Indigenous Batwa [28]. Evicted from their forest homes

when the National Park was created in the early 1990s, the Batwa were forced to resettle in

agrarian communities [28, 30, 31]. The existing burden of ill health among the Batwa has been

characterized across a variety of metrics, including reduced life expectancy (28 years for the

Batwa compared to the Ugandan average of 53 [28]), higher prevalence of malaria (9.4% for

the Batwa compared to 4.5% in the Bakiga population [32]), acute gastrointestinal illness

(compared to East Africa [33]), and extreme food insecurity [34]. The prevalence of HIV

among the Batwa population is, however, lower than that in the Bakiga population [35]. Com-

munity-based health surveys in Kanungu District (in the same communities from which our

hospital sample was derived) have established a significant correlation between ethnicity and
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Fig 1. Map of the study region, Kanungu District, Uganda. The study area is located northwest of Bwindi Impenetrable National

Park, hemmed in by the border of the Democratic Republic of the Congo (DRC).

https://doi.org/10.1371/journal.pone.0179010.g001

Association between in utero meteorological exposures and foetal growth among Indigenous and non-Indigenous

mothers in rural Uganda

PLOS ONE | https://doi.org/10.1371/journal.pone.0179010 June 7, 2017 4 / 21

https://doi.org/10.1371/journal.pone.0179010.g001
https://doi.org/10.1371/journal.pone.0179010


indicators of socio-economic status (SES) (Table 1). Donnelly, Berrang-Ford [32] found signif-

icantly lower levels of education and asset ownership among Indigenous Batwa compared to

the non-Indigenous population. Donnelly, Berrang-Ford [32] also show that ethnicity and SES

had both independent and collinear effects on malaria infection, implying that ethnicity may

act as a partial proxy for gradients in SES in this population. There is also a higher burden of

malnutrition among Batwa women than among Bakiga women [36].

Research has documented high vulnerability to the health impacts of climate change within

both the Batwa and Bakiga populations, and both groups have identified malaria, food insecu-

rity, and gastrointestinal illnesses as climate-sensitive health concerns [28, 29]. Lack of access

to health care and the strenuous nature of subsistence farming labour also give rise to substan-

tial disparities in perinatal health in Kanungu District. Approximately 40% of births in the

region occur in health facilities [37] compared to 57% country-wide [38]. This disparity is par-

alleled by similar metrics examining the presence of a skilled healthcare provider at delivery:

59% of all Ugandan infants are delivered by a skilled provider, compared to 42% of infants in

the Southwest Region [37].

Bwindi Community Hospital (BCH) was established in 2003 as an outreach clinic for the

Batwa, but has expanded into a full inpatient hospital serving 100 000 people across three sub-

counties in Kanungu district [39]. The hospital is located in Buhoma trading centre, and also

operates several satellite clinics in more remote settlements. The hospital’s antenatal clinic sees

approximately 250 mothers per month and performs over 1000 deliveries each year [40]. BCH

also provides antenatal care and family planning services. In 2008, BCH opened a ‘Waiting

Mothers Hostel,’ where women who live at greater distances from the hospital can stay while

they are waiting to give birth [41].

The climate in Kanungu includes two rainy seasons: the ‘short rains’ from October to

December and the ‘long rains’ from March to May [42]. Average temperatures in the region

are relatively cool (typically below 20˚C) in comparison to the rest of the country, though

there has been an increase in mean annual temperature of 1.3˚C over the last fifty years [42].

Global climate models for the region predict increases in both mean annual temperature and

heavy rain events [43, 44] along with increases in severe dry conditions in August and Septem-

ber [45] and trends of increasing drought [46]. Southwestern Uganda has been reported as the

Table 1. Indicators of socioeconomic status among Batwa and Bakiga communities.

Measure (variable descriptor) Batwa (proportion of the

population)

Bakiga (proportion of

the sample)

Source

Malaria prevalence among adults (positive malaria antigen detection test)* 29 (6.45) 20 (4.46) [32]

Moderate acute malnutrition among adult women (classified as moderately

malnourished according to Uganda Ministry of Health Integrated Management of

Acute Malnutrition Guidelines)

61 (45.86) 1 (0.42) [36]

Household mosquito net use (did not have nets) 93 (70.99) 218 (53.56) [32] (by

request)

Assets (did not have any assets) 82 (62.12) 77 (19.01) [32] (by

request)

Access to handwashing facilities (did not have access to handwashing) 96 (73.85) 229 (56.40) [32] (by

request)

Access to soap (did not have access to soap)** 98 (75.38) 252 (62.06) [32] (by

request)

*Prevalence in July 2013 and April 2014—survey of all Batwa adults, sample of Bakiga adults

**Only asked of people that had access to hand washing facility, for example for the Batwa, 32 or 94% of the households that had access to handwashing

had access to soap

https://doi.org/10.1371/journal.pone.0179010.t001
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fastest warming region in the country [47]. Dominant livelihood activities in the region

include agriculture, industrial tea and coffee production, and tourism [28, 29].

2.2 Birth outcome measures

Birth outcomes were ascertained from the hospital records that were completed by nurses dur-

ing labour and after birth. They include information on the mother’s medical history, intrana-

tal measures and interventions, and assessments of the baby at birth. Birth weight in grams is

our primary outcome. In the available birth record data from Bwindi Community Hospital

(2012–2015), there were 3691 births, 3343 of which were singleton births. Of these, there were

3197 complete records with sufficient information to estimate gestational age.

Gestational age (GA) was estimated for all singleton birth records (n = 3197) to determine

the exposure windows of the meteorological variables and to include as a key control variable

in our ‘base’ regression models for the primary outcome analysis. In the case of 591 observa-

tions (17.9%), gestational age was recorded based on ultrasound dating, the most reliable mea-

surement standard for GA. The date of the ultrasounds were not collected, but we note that

ultrasounds conducted later in pregnancy have a greater margin of error than those conducted

within the first trimester, and that there is variation in the timing of initial presentation of

pregnant women to the hospital or antenatal clinic. Where GA based on ultrasound was not

available, last menstrual period (LMP, determined by maternal recall, n = 1742, 52.7%) and

adjusted fundal height (n = 971, 29.4%) were used. Fundal height measures (estimated by mid-

wives by hand measurements, typically without a measuring tape) upon presentation for deliv-

ery were compared with ultrasound expected delivery dates and adjusted to control for fundal

height underestimation of gestation length by an average of two weeks. If the gestational age

based on LMP exceeded 330 days [48], fundal height was used to estimate GA.

2.3 Meteorological data

Meteorological predictor selection was based on the literature and variation in weather in the

study area. We selected the number of days of precipitation (as per Grace et al. (2015)) above

5mm during the exposure window (described below) as our meteorological exposure for the

effects of precipitation in our models. Given the limited range of temperature fluctuations in

the region, the mean of daily temperature (˚C) during each exposure period was selected to

examine the effects of temperature on the outcome variables. Birth season was included in all

models as a fixed effect to control for any unaccounted effects of seasonality [49].

Meteorological data for rainfall and temperature were extracted and matched to each birth

for multiple exposure periods reflecting the entire pregnancy period and each trimester. Daily

rainfall data were estimated based on satellite observations using the Rainfall Estimator, ver-

sion 2.0 (RFE2) algorithm [50, 51]. In this algorithm, rainfall amounts estimated from geosta-

tionary satellite infrared images at high spatial and temporal resolutions are calibrated against

ground rain gauge data as well as satellite microwave measurements. These data were then

interpolated to the Buhoma region to form a daily rainfall time series for the study period. We

processed daily temperature data from the ERA-Interim (ERAi) reanalysis dataset of European

Center of Medium-range Weather Forecasts [52]. This dataset is generated by assimilating

meteorological measurements from various observational sources into a global numerical

model and then forecast at high temporal resolution. We interpolated gridded 3-hourly ERAi

temperature data at 0.75 degree resolution to Buhoma site. The daily mean/maximum/mini-

mum temperatures were then analyzed from the 3-hourly temperature time series at the site.

We validated our extracted daily rainfall and temperature data against local meteorological

measurements (approximately 12 months) for a weather station in Buhoma Town. Both
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rainfall and temperature variables were highly correlated with the station measurements at

higher than a 99% confidence level.

2.4 Covariates

We controlled for variables known to influence birth weight (Table 2). We included infant sex

as a control variable as male infants are typically larger than female infants [53]. To estimate

effects of meteorological exposures on foetal growth in utero, we controlled for gestational age.

Though foetal growth is approximated as gestational age-specific birth weight, we included a

categorized gestational age as a covariate to reduce measurement errors due to heterogeneous

measures of gestational age in the study sample. Based on available data and known determi-

nants of birth weight [54], we included maternal age, ethnicity, parity, and maternal marital

status as control variables. HIV status was also included as a control as infants born to HIV-

positive mothers are more likely to be classified as low birth weight (LBW) [55]. We consid-

ered delivery type as a possible control variable; while delivery type would not be a determi-

nant of LBW, it can be an indicator of complications, and was thus included in models. There

were three classifications for delivery type: spontaneous vaginal birth, assisted vaginal birth

(i.e. via vacuum extraction or with forceps), or Caesarean section. Whether or not a woman

had an ultrasound scan during her pregnancy was included as a proxy for access and quality of

antenatal care, as only women who attended antenatal care underwent ultrasounds and ultra-

sounds were generally only available in the better-equipped hospital-based clinics (as opposed

to satellite clinics in more remote areas). Women who attended antenatal care at a facility with

ultrasound services are meant to undergo two scans at different points in their pregnancy, but

often undergo only one. The timing of the first scan is dependent upon the date of the first

Table 2. Table of variables used in regression analyses.

Variable (Units) Description

Dependent (outcome) variable

Birth weight (g) Continuous

Independent (predictor) variables

Mean of average daily temperature values

(˚C) over the exposure period

Continuous

Number of days with precipitation >5 mm

during exposure period

Count based on dichotomous condition for each day of

pregnancy: rainfall <5mm = 0, rainfall >5mm = 1

Control variables

Infant sex Dichotomous: 0 = male, 1 = female

Gestational age Categories: 0 = full term (�259 days), 1 = moderate to late

preterm (224–259 days), 2 = very preterm (196–224 days),

3 = extremely preterm (<196 days)

Ethnicity Categories: 0 = Bakiga, 1 = Batwa, 3 = Other

Maternal age Continuous

Maternal marital status Dichotomous: 0 = unmarried, 1 = married

Maternal parity Number of prior pregnancies to delivery

Delivery type Categories: 0 = spontaneous vaginal delivery, 1 = assisted

vaginal delivery, 2 = Caesarean

Maternal HIV status Dichotomous: 0 = HIV-, 1 = HIV+

Maternal malaria Dichotomous: 0 = no malaria during pregnancy, 1 = malaria

during pregnancy

Season of birth Categories: 1 = Dec-Feb (dry), 2 = Mar-May (rain), 3 = Jun-

Aug (dry), 4 = Sep-Nov (rain)

Ultrasound Dichotomous: 0 = no ultrasound, 1 = ultrasound

https://doi.org/10.1371/journal.pone.0179010.t002
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antenatal care visit, which occurs in the second trimester for the majority of women attending

antenatal care at Bwindi Community Hospital [56]. The ultrasound costs 1000 Ugandan shil-

lings, a cost that the BCH sonographer expressed may be prohibitive to some mothers with

limited financial means [57]. Women experiencing complications or who are primigravida

may undergo ultrasound scans sooner and/or more often than women whose pregnancies are

progressing normally [56].

We included ethnicity to compare Indigenous vs. non-Indigenous birth outcomes in the

population, which in this context serves as a partial proxy for socio-economic status (see Sec-

tion 2.1). We hypothesized that ethnicity would act not only as a control variable, but also an

effect modifier for meteorological effects on birth weight. This hypothesis is consistent with

climate change adaptation literature, which theorizes that climatic and/or meteorological

effects will manifest through, and be modified by, existing gradients in health [2, 4, 6, 7]. Our

ethnicity variable had low variation; the small subset of Indigenous Batwa limited the statistical

power of analyses using data from this subset.

2.5 Data analysis

Our analytical sample included live singleton births with information on birth weight, gesta-

tional age, and all known covariates (n = 3197). Linear regression was used to estimate mean

differences in birth weight associated with meteorological exposures. We constructed a ‘base’

model that includes infant sex and gestational age to examine sex- and gestational age-specific

birth weight differences by exposure and potential confounders. Gestational age was included

as a categorical control variable due to the potential relatively high measurement errors inher-

ent to LMP- and fundal height-based measurements and a non-linear relation to birth weight

suggested by the lowess-smoothed scatterplot.

We then built models that included all control variables and meteorological exposures, con-

structing four models: a model with meteorological exposures and all control variables for

each of the three trimesters, and a fourth model with meteorological exposures and all control

variables for the entire pregnancy period. We stratified the sample by ethnicity and tested the

same models in each group to investigate ethnicity as an effect modifier. In a separate analysis,

we stratified the sample by season of birth and tested the models for each exposure period.

We conducted multiple sensitivity analyses to examine robustness of associations: (1) re-

analyzing the sample after excluding preterm births (<37 weeks), (2) re-analyzing the sample

after excluding all cases for which GA was not determined by ultrasound, (3) examining asso-

ciations using different thresholds for temperature (e.g., maximum and minimum temperature

exposures) and precipitation (e.g., exposure to number of days with rainfall over 1mm, or

number of days with rainfall over 10mm), (4) testing for interaction effects between meteoro-

logical exposures and infant sex, and (5) testing models with month of conception instead of

season of birth to evaluate any non-random seasonal fertility selection. Further sensitivity anal-

yses evaluated LBW as an outcome using logistic regression. This analysis allowed us to exam-

ine the lower 5–10% of birth weights separately, since as Grace, Davenport [17] state, this

lowest distribution of birth weights is not accurately captured as a continuous dependent

variable.

To assess model fit, we evaluated collinearity by examining the Pearson correlation coeffi-

cient matrix for all predictor variables and control variables. We conducted post-estimation

tests to assess heteroscedasticity (Breysch-Pagan test) and the normality of the residuals (Q-Q

plots and Shapiro-Wilk tests) in our models. We checked that the outcome variable was nor-

mally distributed (in both the overall samples and those stratified by ethnicity). We also evalu-

ated the linearity of the meteorological exposure variables and other control variables using
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scatterplots, as well as lowess smoothing to visually assess trends in these plots. Data were ana-

lysed using Stata v.13 (StataCorp, USA).

2.6 Ethics

This study was approved by the McGill University and the University of Guelph Research Eth-

ics Boards (REB File #461–0414). Additionally, the research team has a Memorandum of

Understanding with, and received approval for this study from, Bwindi Community Hospital

(BCH). The study design conforms to the Canadian Tri-council Policies and follows the

requirements of the Ethical Conduct of Research Involving Human Subjects; it is also in com-

pliance with Ugandan laws and regulations for foreign researchers. As per McGill, Tri-Coun-

cil, and BCH ethical research policies, informed consent by individual patients specific to this

study was not required. This study included retrospective analysis of de-identified hospital rec-

ords, and consent to use the data for hospital and hospital-approved research analysis is pro-

vided by the patient at the time of admission to the hospital or maternity ward.

3. Results

3.1 Descriptive results

The average age of mothers in the study was 24.66 (SD: 5.76) years old, with a mean of 2.72 pre-

vious pregnancies (SD: 2.09) and a mean parity of 1.63 (SD: 1.86) births per woman (Table 3).

The majority of mothers (87.5%) were of Bakiga ethnicity, with a minority of Batwa Indigenous

ethnicity (1.0%) or other non-Indigenous ethnic groups (11.5%). The prevalence of HIV in the

sample was 9.2%, and 34 (1.0%) mothers reported falling ill with malaria during pregnancy.

Nearly 18% of mothers had an ultrasound during their pregnancy. The proportion of babies

delivered by C-section (31.8%) was higher than the national average (5%, UNICEF [38]). This

higher proportion of C-section deliveries reflects the fact that the births examined in this study

all occurred in a hospital setting, compared to national statistical inclusion of all births. BCH is

also a large referral hospital receiving high-risk birth events from smaller referral clinics. Mean

birth weight was 3087.99g (SD: 482.93g), with 237 births classified as LBW (7.2%). The mean

gestation length was 278.03 (SD: 16.51) days, and 256 (7.75%) of the births were preterm. Over

the course of pregnancy, the mean temperature exposure was 19.41˚C (SD: 0.31) and the mean

number of days of precipitation >5mm experienced was 61.60 (SD: 12.49) days.

3.2 Associations between study variables and birth weight

Birth weight increased significantly with maternal age, among married mothers, in babies

born via C-section, and with increasing parity after controlling for gestation age and infant sex

(Table 4). The results for maternal age, maternal marital status, delivery type, parity, and

undergoing ultrasound scan were significant and consistent across models examining the full

sample and those stratified by ethnicity. Infant sex had a substantial effect on birth weight;

being born female corresponded to an approximately 114.5g decrease in birth weight (95% CI:

-147.1 –-81.8g). Babies born to Indigenous Batwa mothers had lower birth weights (-297.4g,

95% CI: -456.8 –-138.0g) compared to those born to Bakiga mothers. Season of birth was not a

significant predictor of birth weight. Estimates in the Batwa sub-sample had wide confidence

intervals, reflecting the small sample size for this subset. Despite the limited statistical power of

the Batwa subset, however, gestational age, most categories of maternal age, whether or not a

mother had an ultrasound, and HIV status were significant exposures for birth weight. We

note however, that there were no births classified as very preterm or extremely preterm in the

Batwa sample, effectively making gestational age a dichotomous variable in this sample.
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Table 3. Descriptive summary of birth outcome, meteorological and control variables in the dataset.

N. (%) Estimate (SD)

Meteorological variables

Season of birth (n = 3304)

Dec-Feb dry 835 (25.3)

Mar-May rainy 801 (24.2)

Jun-Aug dry 791 (23.9)

Sep-Nov rainy 877 (26.5)

Average number of days of rain >5mm during pregnancy

(n = 3124)

61.60 (12.49)

Average temperature (˚C) during pregnancy (n = 3124) 19.41 (0.31)

Maternal variables

Average age of mothers (n = 3265) 24.66 (5.76)

<20 1122 (31.0)

20–24 808 (22.3)

25–29 389 (10.7)

30–34 624 (17.2)

�35 681 (18.8)

Average number of pregnancies including current

(n = 3246)

2.72 (2.09)

Average parity (n = 3261) 1.63 (1.86)

Maternal marital status (n = 3269)

Married 3062 (93.7)

Unmarried 207 (6.3)

HIV status (n = 3205)

Negative 2910 (90.8)

Positive 295 (9.2)

N. with malaria during pregnancy (n = 3274) 34 (1.0)

Ethnicity (n = 3304)

Bakiga 2890 (87.5)

Batwa 33 (1.0)

Other non-Indigenous 381 (11.5)

Antenatal care and delivery variables

Ultrasound (n = 3304)

Had ultrasound 591 (17.9)

Did not have ultrasound 2713 (82.1)

Delivery type (n = 3275)

Spontaneous vaginal birth 2119 (64.7)

Assisted vaginal birth 116 (3.5)

Caesarean section 1040 (31.8)

Infant variables

Infant sex (n = 3294)

Male 1679 (51.0)

Female 1615 (49.0)

Average gestation length (days) (n = 3197) 278.03 (16.51)

Full term (�259 days) 2939 (91.9)

Moderate to late preterm (224–259 days) 218 (6.8)

Very preterm (224–196 days) 26 (0.8)

Extremely preterm (<196 days) 14 (0.4)

Birth weight (n = 3304) 3087.99 (482.93)

N. of low birth weight cases (<2500g) (n = 3304) 237 (7.2)

https://doi.org/10.1371/journal.pone.0179010.t003
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3.3 Meteorological predictors of birth weight

In models testing crude associations of exposure variables with birth weight (adjusting for ges-

tational age and infant sex only) (Table 4), exposure to precipitation in the third trimester and

Table 4. Associations between study variables and birth weight (all models control for infant sex and gestational age).

Full sample (n = 3197) Batwa subset (n = 32)

Variable Coefficient (g) 95% Confidence Interval Coefficient (g) Confidence Interval (95%)

Independent (predictor) variables

Season of birth (ref = Dec-Feb dry)

Mar-May rainy -9.94 -55.21–35.33 5.03 -536.80–546.85

June-Aug dry -5.97 -51.45–39.51 73.50 -487.01–634.01

Sep-Nov rainy -27.85 -72.16–16.45 -119.01 -589.36–351.35

Mean temperature (˚C)

Trimester 1 -11.58 -40.76–17.60 270.09 -208.21–748.39

Trimester 2 1.58 -30.68–33.79 114.59 -154.77–383.95

Trimester 3 15.22 -12.50–42.94 199.61 -71.42–470.63

Entire pregnancy 3.87 -49.60–57.34 587.81* 57.39–1118.24

Number of days with rainfall >5mm

Trimester 1 0.52 -1.42–2.47 -5.58 -26.29–15.13

Trimester 2 0.25 -1.61–2.11 -0.04 -17.44–17.37

Trimester 3 1.74* 0.04–3.45 -1.32 -21.44–18.80

Entire pregnancy 1.64* 0.31–2.96 -3.28 -17.44–10.88

Control variables

Infant sex (ref = male) -114.48*** -147.11 –-81.84 -18.38 -300.52–337.28

Gestational age (ref = full term,�259 days)

Moderate to late preterm (224–259 days) -271.38*** -335.46 –-207.29 -550.27* -1080.01 –-20.53

Very preterm (224–196 days) -778.96*** -962.17 –-595.75

Extremely preterm (<196 days) -871.98*** -1147.42 –-596.53

Maternal age (ref = <20)

20–24 82.77*** 41.35–124.18 -295.14† -617.99–27.70

25–29 69.65* 16.71–122.60 -274.69 -685.70–136.33

30–34 116.51*** 58.75–174.27 -852.23*** -1253.71 –-450.75

�35 -162.39*** -205.99 –-118.80 -642.63*** -970.51 –-314.76

Parity 38.05*** 29.50–46.60 -25.10 -104.47–54.27

Marital status (ref = unmarried) 164.35*** 98.82–229.87 -64.54 -475.49–346.41

Ethnicity (ref = Bakiga)

Batwa -297.36*** -456.75–-137.97

Other -7.74 -57.70–42.23

Ultrasound (ref = no) 46.28* 4.69–87.87 453.23** 145.19–761.28

Delivery type (ref = spontaneous vaginal delivery)

Assisted vaginal delivery -34.10 -120.51–55.31 -193.39 -844.37–457.58

Caesarean section 108.81*** 74.32–143.30 265.19 -74.87–605.24

HIV status (ref = HIV-negative) -34.66 -90.23–20.91 695.54** 215.14–1175.94

Malaria in pregnancy (ref = no malaria during pregnancy) -105.43 -265.24–54.38 - -

***p<0.001

**p<0.01

*p<0.05

†p<0.10

https://doi.org/10.1371/journal.pone.0179010.t004
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throughout pregnancy was associated with a significant but modest increase in birth weight.

Though temperature exposure was not significantly associated with birth weight in models

testing its effect in the full sample or the non-Indigenous subset, mean temperature exposure

over the course of entire pregnancy was borderline significant predictor of birth weight in the

Batwa subset (p = 0.06).

Multivariable models tested the effects of meteorological predictors on birth weight adjust-

ing for all covariates in Table 4 (Table 5). Precipitation exposure in the third trimester and

over the course of the entire pregnancy were positively associated with birth weight. Exposure

to an additional day of precipitation >5mm during the third trimester corresponded to a 3.1 g

(95% CI: 1.0–5.3g) increase in birth weight. In other words, each additional week of exposure

to daily rainfall >5mm in the third trimester corresponds to an increase in birth weight of

approximately 21.7g, which is comparable to the effect of parity (17.9g, 95% CI: 5.2–30.6g) on

birth weight in the study sample. The coefficient for temperature exposure in the third trimes-

ter model indicated that for each degree increase in mean temperature exposure, birth weight

increased by 41.8g, though the confidence interval was wide (95% CI: 0.6–82.9g). The direction

and magnitude of effects of all control variables (shown in Table 4 but not in Table 5) did not

differ substantially across models or from a baseline model that did not contain meteorological

predictor variables.

Strikingly, given the small sample size of the Batwa subset, mean temperature exposure dur-

ing the entire pregnancy was positively associated with birth weight in the Indigenous (Batwa)

subset (Table 4). Each degree increase in mean temperature exposure throughout pregnancy

corresponded to an increase of 587.8g (95% CI: 57.4–1118.2g). In the multivariable models,

there was some indication that third trimester mean temperature exposure corresponded to an

increase of 405.1g (95% CI: -24.6–834.7g) in birth weight (Table 5). The effect sizes of precipi-

tation on birth weight among Batwa were approximately 2–3 times greater than among the

non-Indigenous population, and these estimates fell outside of the confidence intervals for the

non-Indigenous population for individual trimesters (but not the entire pregnancy), and were

not independently significant in the Batwa subset model.

Table 5. Trimester-specific associations between meteorological exposures and birth weight, stratified by ethnicity.

All cases Batwa

Trimester Meteorological Variables Coefficient Confidence Interval (95%) Coefficient Confidence Interval (95%)

Trimester 1 Number of days with rainfall >5mm -0.11 -2.58–2.38 1.40 -23.74–26.55

Mean temperature (˚C) -20.68 -69.41–28.05 253.87 -487.19–994.93

Trimester 2 Number of days with rainfall >5mm -0.39 -3.08–2.29 0.41 -31.34–32.16

Mean temperature (˚C) 3.31 -48.07–54.70 245.05 -275.45–765.54

Trimester 3 Number of days with rainfall >5mm 3.12** 0.97–5.27 9.75 -19.60–39.10

Mean temperature (˚C) 41.78* 0.64–82.92 405.07† -24.56–834.69

Entire pregnancy Number of days with rainfall >5mm 1.63* 0.06–3.21 3.00 -15.23–21.24

Mean temperature (˚C) 26.03 -35.33–87.40 571.23 -141.70–1284.17

***p<0.001

**p<0.01

*p<0.05

†p<0.10

N.B. Models include all control variables from the baseline model (Table 4). Coefficients and confidence intervals for control variables are not shown, but did

not substantively differ from the baseline model. Each model includes both rainfall and temperature variables together in the model. Models are stratified by

trimesters and population subsets.

https://doi.org/10.1371/journal.pone.0179010.t005
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In addition to this association observed between birth weight and temperature exposure

during the third trimester, sensitivity analyses of models for the Batwa subset with an adjusted

precipitation variable with a lower threshold (inclusive of days with rainfall over 1mm) and of

models restricted to term births (�37 weeks) indicated that there may also be a significant asso-

ciation between mean temperature exposure incurred throughout pregnancy and birth weight.

The trends we observed in Table 4 for all cases led to further inquiry to test if the patterns of

association might differ by season of birth (Table 6). In models stratified by season of birth, we

observed no significant associations between meteorological exposures and birth weight for

births occurring in seasons 1 and 2 (December–February dry season and March–May rainy

season, respectively). However, in the driest season, season 3 (June–August), each degree

increase in average temperature exposure during the third trimester corresponded to a 123.1g

(95% CI: 19.0g – 227.2g) increase in birth weight. There were also significant associations

between birth weight and precipitation exposures for babies born between June and August.

For the births in this period, increased exposure to days of rainfall>5mm in the second tri-

mester was associated with a -6.2g (95% CI: -11.8g –-0.7g) decrease in birth weight and expo-

sure in the third trimester with a 9.4g (95% CI: 4.3g – 14.5g) increase in birth weight. Overall,

each additional day of exposure to rainfall >5mm throughout pregnancy was associated with a

4.8g (95% CI: 1.6g – 8.0g) increase in birth weight. For infants born in season 4 (September–

November, wet period), there was only a significant association between mean temperature

exposure in the third trimester and birth weight—a 98.4g (95% CI: 23.0g – 173.7g) increase for

each additional degree of average temperature exposure.

Results of our sensitivity analyses of subsets restricted to term births and cases with ultra-

sound GA measures showed consistent results in both direction and statistical significance of

associations (Table 7). Models without a control variable for gestational age also showed asso-

ciations consistent with those presented in Table 5. We also observed that results were robust

across varying temperature and precipitation thresholds for models examining both the full

sample and the Indigenous and non-Indigenous subsets. However, results of models with a

dichotomous outcome variable (LBW) did not indicate that meteorological variables were sig-

nificant predictors of LBW classification.

We also tested for interaction between sex and meteorological values and found no signifi-

cant interactions. Lastly, we included dummy variables for month in the full models and

observed no changes in the patterns of association.

4. Discussion

To our knowledge, this is one of the first studies to examine the effects of specific perinatal

meteorological exposures on birth weight in a vulnerable sub-Saharan Africa population, and

the first to consider effect modification by existing social gradients in health in a specific

regional setting. We find comparable results to Grace, Davenport [17] with respect to the

direction of associations between precipitation predictors and birth weight, but note that the

magnitude of association is greater in our study, indicating that precipitation may have a

greater effect on birth weight in this rural population compared to the continental average.

Our results are also consistent with our hypothesis that meteorological impacts incurred in the

third trimester have the most significant impact on birth weight. The positive effect of precipi-

tation on birth weight might be related to, at least partially, harvest cycles and maternal nutri-

tional status, as food may be more plentiful in the rainy season.

Season of birth did not emerge in the initial models as a significant determinant of birth

weight. However, when we stratified the sample by season of birth, the associations between

meteorological exposures and birth weight were inconsistent across babies born at different
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times of year. Indeed, only those born between June and August showed significant associa-

tions between in utero temperature and precipitation exposures; those born between Sept-

ember and November showed a significant exposure only between third trimester average

temperature exposure and birth weight. This heightened sensitivity to meteorological

Table 6. Trimester-specific associations between meteorological exposures and birth weight, stratified by season of birth.

Trimester Meteorological Variables Coefficient Confidence Interval (95%)

Season 1 (December–February DRY)

Trimester 1 Number of days with rainfall >5mm 1.35 -4.16–6.87

Mean temperature (˚C) -40.38 -152.67–71.92

Trimester 2 Number of days with rainfall >5mm -1.72 -6.90–3.45

Mean temperature (˚C) 9.85 -78.62–98.31

Trimester 3 Number of days with rainfall >5mm 1.24 -2.67–5.15

Mean temperature (˚C) -4.72 -83.86–74.41

Entire pregnancy Number of days with rainfall >5mm 0.40 -3.43–4.23

Mean temperature (˚C) -23.85 -132.13–84.43

Season 2 (March–May RAINY)

Trimester 1 Number of days with rainfall >5mm -1.85 -7.52–3.83

Mean temperature (˚C) -7.82 -100.74–85.09

Trimester 2 Number of days with rainfall >5mm 1.78 -3.65–7.21

Mean temperature (˚C) 53.24 -47.50–153.99

Trimester 3 Number of days with rainfall >5mm 2.94 -2.30–8.19

Mean temperature (˚C) -49.11 -133.86–35.65

Entire pregnancy Number of days with rainfall >5mm 0.57 -2.65–3.80

Mean temperature (˚C) 24.95 -89.68–139.57

Season 3 (June–August DRY)

Trimester 1 Number of days with rainfall >5mm 4.05 -1.35–9.45

Mean temperature (˚C) 34.80 -65.99–135.60

Trimester 2 Number of days with rainfall >5mm -6.24* -11.76 –-0.72

Mean temperature (˚C) -58.89 -212.87–95.08

Trimester 3 Number of days with rainfall >5mm 9.43*** 4.33–14.52

Mean temperature (˚C) 123.06* 18.95–227.18

Entire pregnancy Number of days with rainfall >5mm 4.81** 1.58–8.03

Season 4 (September–November RAINY)

Trimester 1 Number of days with rainfall >5mm -1.66 -6.20–2.88

Mean temperature (˚C) -131.64† -265.69–2.41

Trimester 2 Number of days with rainfall >5mm 4.75 -1.41–10.91

Mean temperature (˚C) 12.67 -105.68–131.02

Trimester 3 Number of days with rainfall >5mm 3.17 -0.78–7.11

Mean temperature (˚C) 98.37* 23.04–173.70

Entire pregnancy Number of days with rainfall >5mm 1.29 -1.64–4.22

Mean temperature (˚C) -3.18 -133.95–127.58

***p<0.001

**p<0.01

*p<0.05

†p<0.10

N.B. Models include all control variables from the baseline model (Table 4). Coefficients and confidence intervals for control variables are not shown, but did

not substantively differ from the baseline model. Each model includes both rainfall and temperature variables together in the model. Models are stratified by

trimesters.

https://doi.org/10.1371/journal.pone.0179010.t006
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exposures for July through August births (the driest and hottest season) could be linked to

harvest cycles in the region—women who give birth in this season may benefit more from

increased temperatures and increased rainfall in their third trimester as these conditions could

increase the harvest yield in a time of year when food is most scarce. The third trimester is a

crucial period for increasing birth weight, leading us to conjecture that the reverse trends

observed for second trimester exposures may be residual effects related to a preferencing of the

most optimal conditions during the last trimester.

The explanation of the positive effect of temperature on birth weight in season 4 (September

to November) is less obvious, and may be related to the effects of temperature on local harvest

cycles (perhaps due to a latent effect of sensitivity to meteorological exposures during the pre-

ceding season) or potentially to more direct physiological effects of ambient temperature on

foetal development [14, 58]. Variation in temperature in the region is relatively minimal; dur-

ing the study period average daily temperature ranged between 16˚C to 23˚C. While we iden-

tify significant associations, these do not imply causation or distinguish the potential causal

mechanisms by which meteorological variables might affect birth weight. In this context,

weather may be affecting birth weight directly through nutritional resources, or indirectly

through impacts on gestational age. We cannot infer, for example, that warming temperatures

projected for the region [43, 44] will lead to increased birth weights. Understanding the causal

pathways through that may be contributing to the association between temperature and birth

weight would benefit from further exploration, particularly from a qualitative perspective.

In the non-Indigenous subset, it was primarily weather exposures incurred in the third tri-

mester that were associated with birth weight. However, the effect of mean temperature expo-

sure appeared to be important throughout pregnancy in several models examining only

Indigenous Batwa cases. We found some variation in the associations between meteorological

exposures and birth weight among Batwa compared to the non-Indigenous population. This

may reflect modification of meteorological impacts on birth outcomes by ethnicity among

mothers living in the same region and with access to similar health services.

The differential impacts of temperature on birth weight between the Indigenous and non-

Indigenous subsets may reflect differences in agricultural cycles between the two populations.

Table 7. Sensitivity analyses of multivariable models for subsets of term births and ultrasound-dated births.

Term births Ultrasound-dated births

Trimester Meteorological Variables Coefficient Confidence Interval (95%) Coefficient Confidence Interval (95%)

Trimester 1 Number of days with rainfall >5mm 0.46 -2.06–2.97 -1.30 -7.58–4.99

Mean temperature (˚C) -14.42 -64.33–35.50 -13.46 -139.12–112.20

Trimester 2 Number of days with rainfall >5mm 0.32 -2.39–3.03 3.91 -2.66–10.49

Mean temperature (˚C) 14.19 -38.21–66.59 38.84 -90.90–168.58

Trimester 3 Number of days with rainfall >5mm 3.92** 1.55–6.30 10.59** 3.47–17.72

Mean temperature (˚C) 48.14** 5.21–91.07 147.58* 25.14–270.03

Entire pregnancy Number of days with rainfall >5mm 2.53** 0.87–4.19 6.59** 1.50–11.68

Mean temperature (˚C) 45.32 -17.51–108.15 154.42† -23.97–332.82

***p<0.001

**p<0.01

*p<0.05

†p<0.10

N.B. Models include all control variables from the baseline model (Table 4). Coefficients and confidence intervals for control variables are not shown, but did

not substantively differ from the baseline model. Each model includes both rainfall and temperature variables together in the model. Models are stratified by

trimesters and population subsets

https://doi.org/10.1371/journal.pone.0179010.t007
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Patterson et al. (Under review) found, for example, that the Batwa seasons of harvest and fam-

ine begin earlier than neighbouring non-Indigenous populations in Kanungu District due to

high impoverishment and limited historic experience with agriculture. Thus, the direct physio-

logical effects of ambient temperature on birth weight may supersede those of variation in

food availability according to seasonal precipitation in this population. This result is consistent

with findings from Grace, Davenport [17] that showed the effects of temperature being signifi-

cant in non-agriculturalist livelihood groups only, as the Batwa are still adapting to the agrar-

ian lifestyle that has been imposed upon them [28]. Maternal height and weight are important

determinants of birth weight [15], and Batwa are an Indigenous pygmy tribe characterized by

small stature. While this could explain significant differences in birth weight by ethnicity

(mean birth weight was 3090.0g for non-Indigenous infants and 2797.0g for Batwa infants,

t = 3.80 (32.8), p<0.01), it would not explain the differences in the nature of the meteorology-

birth weight relationship between the two groups.

One of the chief limitations to this study is its reliance on hospital births, a sample which is

likely not representative of all births in the area and thus limits the generalizability of our find-

ings. In 2013–2014, for example, only 1264 (42%) of the estimated 2958 deliveries in the catch-

ment area occurred in the hospital [40]. This split between mothers giving birth at home

versus in the hospital is a potential source of endogeneity due to unobserved variables affecting

a mother’s choice to give birth in hospital. We do not know if healthier, wealthier mothers are

self-selecting to deliver at the hospital, or if higher risk pregnancies are referred to a hospital

for birth by community health workers and smaller clinics; both trends may be present in the

dataset, though it is more likely that the former predominates over the latter. Given the impov-

erishment of the region and cost associated with hospital services, we expect that our sample is

more likely a subset of wealthier/higher SES mothers, and that the results presented here are

likely underestimates compared to the general community population. Findings from this

study cannot, however, be appropriately extrapolated from mothers choosing hospital-based

births to the general population. Strand, Barnett [59] critique the use of retrospective cohorts

for assessing seasonal patterns in birth outcomes due to the potential for a “fixed cohort

bias”—the exclusion of shorter pregnancies at the beginning of studies and longer pregnancies

at the end—though they allow for the necessity of such studies in some contexts; in this in-

stance our sample size would have been severely compromised by their recommended cut-

offs. Several control variables absent from the database would have enhanced this analysis,

including maternal height and weight, more complete records of malarial infection throughout

during pregnancy, maternal nutritional status, SES, and consistent estimates of gestational age

via ultrasound dating early in pregnancy. Measures used for ascertaining gestational age in our

study included not only ultrasound-based dating but also LMP- and fundal height-based dat-

ing. Gestational age based on LMP has been criticised for recall bias [60]. Fundal height can

only offer a crude approximation of actual gestational age compared to ultrasound dating [61,

62], especially when gestational age is derived from only one point measure of fundal height

[63]. In addition to the error inherent to these measures individually, combining gestational

age data from a range of measures (including fundal height, LMP recall, and ultrasound dat-

ing) is problematic for comparison to any birth weight for gestational age distribution. We

attempt to mitigate these limitations with sensitivity analyses for the subset of births for which

GA was determined by ultrasound, which showed that model behaviour for this subset was

generally consistent with trends observed for the full dataset. Including a GA variable in the

models does pose a risk of over-controlling given the overlap in the causal pathways of GA and

birth weight, but our sensitivity analyses of term births and models without GA controls were

robust. In this case, we elected to look specifically at the non-GA related associations with

birth weight and thus controlled for it. The associations between GA and meteorological
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exposures, as well as the causal pathways contributing to these associations, merit further con-

sideration in future research. The sample size of the Batwa mothers is a further limitation to

our study, however it is reflective of the demographic composition of the region, of which

Indigenous persons make up 1% of the population. The statistical power of this sample is low,

which translates to an unavoidable lack of precision in the Batwa results.

Our results highlight heterogeneity in the vulnerability of infant health to meteorological

variation in different contexts, with implications for climate change impacts and adaptation

research. The health effects of climate change will manifest along existing social gradients, with

gendered impacts on nutrition highlighted as an area of particular concern since women and

girls’ nutrition is often deprioritized relative to their male relatives [64]. Our results indicate

that while there is a significant effect of meteorological variation on birth weight; these effects

may vary along social gradients. This implies that interventions to reduce existing social gradi-

ents may be of sufficient magnitude to offset some health impacts predicted under climate

change.

Pregnancy results in increased energy consumption and increased nutritional needs [65],

rendering pregnant women especially vulnerable to periods of food scarcity anticipated with

the effects of climate change [7]. This study highlights the importance of the third trimester as

most vulnerable to meteorological effects on birth weight, consistent with other research [66–

68]. Given that this is likely linked to maternal nutritional needs, this information identifies

women in their third trimesters as an important group in need of additional nutritional

resources, particularly in periods of little rain. While there does not appear to be a most opti-

mal season in which to give birth, there may be increased sensitivity to meteorological expo-

sures in the June to November period. Monitoring weather conditions for women expected to

deliver in this window could be important for targeting nutritional interventions. Indigenous

Batwa mothers may be at magnified risk—beyond existing infant health disparities—during

periods of cold, particularly in the third trimester. The health inequities the Batwa face more

broadly put the most vulnerable among them—pregnant women and infants—at greater risk,

and interventions, both immediate and upstream, are needed to eliminate these inequities.

The results of this study are of particular relevance to maternal health services at Bwindi

Community Hospital, which aims to decrease maternal and child mortality rates by 25% by

2019 [40]. As climate in the Kanungu region becomes less predictable with more extreme rain-

fall [43, 44] and drought [46] events projected, agricultural production in the Kanungu region

could be threatened [34]. Planning for these changes and developing interventions responsive

to both the current and future needs of pregnant women and newborns in the region is a

health priority and grand challenge.
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