26 research outputs found

    La marche : petite révolution dans la danse

    Get PDF

    WEIRD: Wide-orbit Exoplanet search with InfraRed Direct imaging

    Get PDF
    We report results from the Wide-orbit Exoplanet search with InfraRed Direct imaging (WEIRD), a survey designed to search for Jupiter-like companions on very wide orbits (1000 to 5000 AU) around young stars (<<120 Myr) that are known members of moving groups in the solar neighborhood (<<70 pc). Sharing the same age, distance, and metallicity as their host while being on large enough orbits to be studied as "isolated" objects make such companions prime targets for spectroscopic observations and valuable benchmark objects for exoplanet atmosphere models. The search strategy is based on deep imaging in multiple bands across the near-infrared domain. For all 177 objects of our sample, zab′z_{ab}^\prime, JJ, [3.6] and [4.5] images were obtained with CFHT/MegaCam, GEMINI/GMOS, CFHT/WIRCam, GEMINI/Flamingos-2, and SpitzerSpitzer/IRAC. Using this set of 4 images per target, we searched for sources with red zab′z_{ab}^\prime and [3.6]−[4.5][3.6]-[4.5] colors, typically reaching good completeness down to 2Mjup companions, while going down to 1Mjup for some targets, at separations of 1000−50001000-5000 AU. The search yielded 4 candidate companions with the expected colors, but they were all rejected through follow-up proper motion observations. Our results constrain the occurrence of 1-13 Mjup planetary-mass companions on orbits with a semi-major axis between 1000 and 5000 AU at less than 0.03, with a 95\% confidence level.Comment: 55 pages, 16 figures, accepted to A

    Bayesian analysis to identify new star candidates in nearby young stellar kinematic groups

    Full text link
    We present a new method based on a Bayesian analysis to identify new members of nearby young kinematic groups. The analysis minimally takes into account the position, proper motion, magnitude and color of a star, but other observables can be readily added (e.g. radial velocity, distance). We use this method to find new young low-mass stars in the \beta Pictoris (\beta PMG) and AB Doradus (ABDMG) moving groups and in the TW Hydrae (TWA), Tucana-Horologium (THA), Columba, Carina and Argus associations. Starting from a sample of 758 mid-KM (K5V-M5V) stars showing youth indicators such as H\alpha\ and X-ray emission, our analysis yields 215 new highly probable low-mass members of the kinematic groups analyzed. One is in TWA, 37 in \beta PMG, 17 in THA, 20 in Columba, 6 in Carina, 50 in Argus, 33 in ABDMG, and the remaining 51 candidates are likely young but have an ambiguous membership to more than one association. The false alarm rate for new candidates is estimated to be 5% for \beta PMG and TWA, 10% for THA, Columba, Carina and Argus, and 14% for ABDMG. Our analysis confirms the membership of 58 stars proposed in the literature. Firm membership confirmation of our new candidates will require measurement of their radial velocity (predicted by our analysis), parallax and lithium 6708 {\AA} equivalent width. We have initiated these follow-up observations for a number of candidates and we have identified two stars (2MASSJ0111+1526, 2MASSJ0524-1601) as very strong candidate members of the \beta PMG and one strong candidate member (2MASSJ0533-5117) of the THA; these three stars have radial velocity measurements confirming their membership and lithium detections consistent with young age. Finally, we proposed that six stars should be considered as new bona fide members of \beta PMG and ABDMG, one of which being first identified in this work, the others being known candidates from the literature.Comment: Accepted for publication in Ap

    WEIRD: Wide-orbit Exoplanet Search with InfraRed Direct Imaging

    Get PDF
    We report results from the Wide-orbit Exoplanet search with InfraRed Direct imaging, or WEIRD, a survey designed to search for Jupiter-like companions on very wide orbits (1000–5000 au) around young stars (<120 Myr) that are known members of moving groups in the solar neighborhood (<70 pc). Companions that share the same age, distance, and metallicity as their host while being on large enough orbits to be studied as "isolated" objects make prime targets for spectroscopic observations, and they are valuable benchmark objects for exoplanet atmosphere models. The search strategy is based on deep imaging in multiple bands across the near-infrared domain. For all 177 objects of our sample, z_(ab)', J, [3.6], and [4.5] images were obtained with CFHT/MegaCam, GEMINI/GMOS, CFHT/WIRCam, GEMINI/Flamingos-2, and Spitzer/IRAC. Using this set of four images per target, we searched for sources with red z_(ab)' and [3.6]–[4.5] colors, typically reaching good completeness down to 2 M_(Jup) companions, while going down to 1 M_(Jup) for some targets, at separations of 1000–5000 au. The search yielded four candidate companions with the expected colors, but they were all rejected through follow-up proper motion observations. Our results constrain the occurrence of 1–13 M_(Jup) planetary-mass companions on orbits with a semimajor axis between 1000 and 5000 au at less than 0.03, with a 95% confidence level

    New Mass and Radius Constraints on the LHS 1140 Planets -- LHS 1140 b is Either a Temperate Mini-Neptune or a Water World

    Full text link
    The two-planet transiting system LHS 1140 has been extensively observed since its discovery in 2017, notably with SpitzerSpitzer, HST, TESS, and ESPRESSO, placing strong constraints on the parameters of the M4.5 host star and its small temperate exoplanets, LHS 1140 b and c. Here, we reanalyse the ESPRESSO observations of LHS 1140 with the novel line-by-line framework designed to fully exploit the radial velocity content of a stellar spectrum while being resilient to outlier measurements. The improved radial velocities, combined with updated stellar parameters, consolidate our knowledge on the mass of LHS 1140 b (5.60±\pm0.19 M⊕_{\oplus}) and LHS 1140 c (1.91±\pm0.06 M⊕_{\oplus}) with unprecedented precision of 3%. Transits from SpitzerSpitzer, HST, and TESS are jointly analysed for the first time, allowing us to refine the planetary radii of b (1.730±\pm0.025 R⊕_{\oplus}) and c (1.272±\pm0.026 R⊕_{\oplus}). Stellar abundance measurements of refractory elements (Fe, Mg and Si) obtained with NIRPS are used to constrain the internal structure of LHS 1140 b. This planet is unlikely to be a rocky super-Earth as previously reported, but rather a mini-Neptune with a ∼\sim0.1% H/He envelope by mass or a water world with a water-mass fraction between 9 and 19% depending on the atmospheric composition and relative abundance of Fe and Mg. While the mini-Neptune case would not be habitable, a water-abundant LHS 1140 b potentially has habitable surface conditions according to 3D global climate models, suggesting liquid water at the substellar point for atmospheres with relatively low CO2_2 concentration, from Earth-like to a few bars.Comment: 31 pages, 18 figures, accepted for publication in ApJ

    Féminisme latent et renversement esthétique

    No full text

    Échographies de deux festivals de danse européens

    No full text
    corecore